Pressure Gradient and Choking Velocity for Adiabatic Pipe Flow of a Homogeneous Steam-Water-Solids Mixture

2000 ◽  
Vol 122 (4) ◽  
pp. 769-773
Author(s):  
F. Fluerenbrock

Mixtures containing steam, water, and solids develop when processing ore slurries at elevated temperature and pressure. Based on homogeneous one-dimensional three-phase flow theory equations are derived for pressure gradient, choking velocity, and sonic velocity of a steam-water-solids mixture flowing in a pipe. It is concluded that a quasi-choking condition may occur when the flow changes from subcooled to flashing conditions. [S0098-2202(00)00104-8]

1966 ◽  
Vol 6 (01) ◽  
pp. 62-72 ◽  
Author(s):  
Byron S. Gottfried ◽  
W.H. Guilinger ◽  
R.W. Snyder

Abstract Two numerical methods are presented for solving the equations for one-dimensional, multiphase flow in porous media. The case of variable physical properties is included in the formulation, although gravity and capillarity are ignored. Both methods are analyzed mathematically, resulting in upper and lower bounds for the ratio of time step to mesh spacing. The methods are applied to two- and three-phase waterflooding problems in laboratory-size cores, and resulting saturation and pressure distributions and production histories are presented graphically. Results of the two-phase flow problem are in agreement with the predictions of the Buckley-Leverett theory. Several three-phase flow problems are presented which consider variations in the water injection rate and changes in the initial oil- and water-saturation distributions. The results are different physically from the two-phase case; however, it is shown that the Buckley-Leverett theory can accurately predict fluid interface velocities and displacing-fluid frontal saturations for three-phase flow, providing the correct assumptions are made. The above solutions are used as a basis for evaluating the numerical methods with respect to machine time requirements and allowable time step for a fixed mesh spacing. Introduction Considerable progress has been made in recent years in obtaining numerical solutions of the equations for two-phase flow in porous media. Douglas, Blair and Wagner2 and McEwen11 present different methods for solving the one-dimensional case for incompressible fluids with capillarity (the former using finite differences, the latter with an approach based upon characteristics). Fayers and Sheldon4 and Hovanesian and Fayers8 have extended these studies to include the effects of gravity. West, Garvin and Sheldon,14 in a pioneer paper, treat linear and radial systems with both capillarity and gravity and they also include the effects of compressibility. Douglas, Peaceman and Rachford3 consider two-dimensional, two-phase, incompressible flow with gravity and capillarity and Blair and Peaceman1 have extended this method to allow for compressible fluids. No one, however, has examined the case of three-phase flow, even for the relatively simple case of one-dimensional flow of incompressible fluids in the absence of gravity and capillarity. In obtaining a numerical technique for simulating forward in situ combustion laboratory experiments, Gottfried5 has developed a method for solving the one-dimensional, compressible flow equations with any number of flowing phases. Gravity and capillarity are not included in the formulation. The method has been used successfully, however, for two- and three-phase problems in a variable-temperature field with sources and sinks. This paper examines the algorithm of Gottfried more critically. Two numerical methods are presented for solving the one-dimensional, multi-phase flow equations with variable physical properties. Both methods are analyzed mathematically, and are used to simulate two- and three-phase waterflooding problems. The numerical solutions are then taken as a basis for comparing the utility of the methods. Problem Statement Consider a one-dimensional system in which capillarity, gravity and molecular diffusion are negligible. If n immiscible phases are present, n 2, the equation describing the flow of the ith phase is:12Equation 1 where all terms can vary with x and t.


2011 ◽  
Vol 66-68 ◽  
pp. 1187-1192 ◽  
Author(s):  
Hai Qin Wang ◽  
Yong Wang ◽  
Lei Zhang

Experiments were conducted in a horizontal multiphase flow test loop (50mm inner diameter, 40m long) to study the flow patterns for oil-gas-water three-phase flow and the pressure gradient fluctuation based on flow patterns. Using new methods of definition, 12 types of flow patterns were obtained and phase distribution characteristics of each pattern were analyzed. A new flow pattern (SW║IN) was firstly found in this work. Characteristics of the pressure gradient based on 7 flow patterns were carefully discussed. It was found that the pressure gradient increased with the increase of gas superficial velocity and oil-water mixture velocity. However, characteristics of the pressure gradient became complex with the increase of input water cut. The influence of flow structure of oil-water two-phase should be fully considered.


1988 ◽  
Vol 24 (6) ◽  
pp. 853-863 ◽  
Author(s):  
R. J. Lenhard ◽  
J. H. Dane ◽  
J. C. Parker ◽  
J. J. Kaluarachchi

Sign in / Sign up

Export Citation Format

Share Document