scholarly journals Derivation of constitutive equations for interfacial momentum transfer required for the analyses of gas-liquid-solid three-phase flow with a one-dimensional three-fluid model.

1991 ◽  
Vol 57 (536) ◽  
pp. 1239-1245 ◽  
Author(s):  
Akio TOMIYAMA ◽  
Hisato MINAGAWA ◽  
Tadashi SAKAGUCHI
Author(s):  
Jose Zaghloul ◽  
Michael Adewumi ◽  
M. Thaddeus Ityokumbul

The transport of unprocessed gas streams in production and gathering pipelines is becoming more attractive for new developments, particularly those is less friendly enviroments such as deep offshore locations. Transporting gas, oil, and water together from wells in satellite fields to existing processing facilities reduces the investments required for expanding production. However, engineers often face several problems when designing these systems. These problems include reduced flow capacity, corrosion, emulsion, asphaltene or wax deposition, and hydrate formation. Engineers need a tool to understand how the fluids travel together, quantify the flow reduction in the pipe, and determine where, how much, and the type of liquid that would from in a pipe. The present work provides a fundamental understanding of the thermodynamics and hydrodynamic mechanisms of this type of flow. We present a model that couples complex hydrodynamic and thermodynamic models for describing the behavior of fluids traveling in near-horizontal pipes. The model incorporates: • A hydrodynamic formulation for three-phase flow in pipes. • A thermodynamic model capable of performing two-phase and three-phase flow calculations in an accurate, fast and reliable manner. • A new theoretical approach for determining flow pattern transitions in three-phase (gas-oil-water) flow, and closure models that effectively handle different three-phase flow patterns and their transitions. The unified two-fluid model developed herein is demonstrated to be capable of handling systems exhibiting two-phase (gas-water and gas-oil) and three-phase (gas-oil-water) flow. Model predictions were compared against field and experimental data with excellent matches. The hydrodynamic model allows: 1) the determination of flow reduction due to the condensation of liquid(s) in the pipe, 2) assessment of the potential for forming substances that might affect the integrity of the pipe, and 3) evaluation of the possible measures for improving the deliverability of the pipeline.


1966 ◽  
Vol 6 (01) ◽  
pp. 62-72 ◽  
Author(s):  
Byron S. Gottfried ◽  
W.H. Guilinger ◽  
R.W. Snyder

Abstract Two numerical methods are presented for solving the equations for one-dimensional, multiphase flow in porous media. The case of variable physical properties is included in the formulation, although gravity and capillarity are ignored. Both methods are analyzed mathematically, resulting in upper and lower bounds for the ratio of time step to mesh spacing. The methods are applied to two- and three-phase waterflooding problems in laboratory-size cores, and resulting saturation and pressure distributions and production histories are presented graphically. Results of the two-phase flow problem are in agreement with the predictions of the Buckley-Leverett theory. Several three-phase flow problems are presented which consider variations in the water injection rate and changes in the initial oil- and water-saturation distributions. The results are different physically from the two-phase case; however, it is shown that the Buckley-Leverett theory can accurately predict fluid interface velocities and displacing-fluid frontal saturations for three-phase flow, providing the correct assumptions are made. The above solutions are used as a basis for evaluating the numerical methods with respect to machine time requirements and allowable time step for a fixed mesh spacing. Introduction Considerable progress has been made in recent years in obtaining numerical solutions of the equations for two-phase flow in porous media. Douglas, Blair and Wagner2 and McEwen11 present different methods for solving the one-dimensional case for incompressible fluids with capillarity (the former using finite differences, the latter with an approach based upon characteristics). Fayers and Sheldon4 and Hovanesian and Fayers8 have extended these studies to include the effects of gravity. West, Garvin and Sheldon,14 in a pioneer paper, treat linear and radial systems with both capillarity and gravity and they also include the effects of compressibility. Douglas, Peaceman and Rachford3 consider two-dimensional, two-phase, incompressible flow with gravity and capillarity and Blair and Peaceman1 have extended this method to allow for compressible fluids. No one, however, has examined the case of three-phase flow, even for the relatively simple case of one-dimensional flow of incompressible fluids in the absence of gravity and capillarity. In obtaining a numerical technique for simulating forward in situ combustion laboratory experiments, Gottfried5 has developed a method for solving the one-dimensional, compressible flow equations with any number of flowing phases. Gravity and capillarity are not included in the formulation. The method has been used successfully, however, for two- and three-phase problems in a variable-temperature field with sources and sinks. This paper examines the algorithm of Gottfried more critically. Two numerical methods are presented for solving the one-dimensional, multi-phase flow equations with variable physical properties. Both methods are analyzed mathematically, and are used to simulate two- and three-phase waterflooding problems. The numerical solutions are then taken as a basis for comparing the utility of the methods. Problem Statement Consider a one-dimensional system in which capillarity, gravity and molecular diffusion are negligible. If n immiscible phases are present, n 2, the equation describing the flow of the ith phase is:12Equation 1 where all terms can vary with x and t.


SPE Journal ◽  
2016 ◽  
Vol 22 (01) ◽  
pp. 374-388 ◽  
Author(s):  
Mahdy Shirdel ◽  
Kamy Sepehrnoori

Summary Multiphase flow models have been widely used for downhole-gauging and production logging analysis in the wellbores. Coexistence of hydrocarbon fluids with water in production wells yields a complex flow system that requires a three-phase flow model for better characterizing the flow and analyzing measured downhole data. In the past few decades, many researchers and commercial developers in the petroleum industry have aggressively expanded development of robust multiphase flow models for the wellbore. However, many of the developed models apply homogeneous-flow models with limited assumptions for slippage between gas and liquid bulks or use purely two-fluid models. In this paper, we propose a new three-phase flow model that consists of a two-fluid model between liquid and gas and a drift-flux model between water and oil in the liquid phase. With our new method, we improve the simplifying assumptions for modeling oil, water, and gas multiphase flow in wells, which can be advantageous for better downhole flow characterization and phase separations in gravity-dominated systems. Furthermore, we developed semi-implicit and nearly implicit numerical algorithms to solve the system of equations. We discuss the stepwise-development procedures for these methods along with the assumptions in our flow model. We verify our model results against analytical solutions for the water faucet problem and phase redistribution, field data, and a commercial simulator. Our model results show very good agreement with benchmarks in the data.


2011 ◽  
Vol 130-134 ◽  
pp. 869-872
Author(s):  
Ru Quan Liang ◽  
Fu Sheng Yan ◽  
Jun Hong Ji ◽  
Ji Cheng He

In this work, numerical simulations have been conducted to investigate the particle mixing feature in a stirred vessel driven by an impeller. The Eulerian multi-fluid model has been employed along with the standard k–ε turbulence model to simulate the gas-liquid-solid three-phase flow in the stirred vessel. The effects of impeller speed and immersion depth of impeller on the particle distribution are discussed. The results show that the particle volume fractions nearby the vessel bottom are large on the vicinity of the side walls of the vessel and small in the vessel middle region at different impeller speeds and immersion depths.


Author(s):  
Weiyi Huang ◽  
Jinfa Shi ◽  
Jie Yang ◽  
Junxu Ma

The non-powered separator is one of the key equipment in the dry sand production line, which is responsible for the separation of coarse and fine materials. In this paper, based on the turbulence Standard  Model, the air sand powder three-phase fluid model is simplified to gas-solid-solid three-phase flow, and the 3D model of the non-powered separator was built. The process of sand powder separation was simulated by using Fluent software. It is found that the larger the air volume control valve blade angle is, the more sand is removed, and the blade angle can be adjusted in the range of 15° to 60° according to the actual needs in industrial production.


2000 ◽  
Vol 122 (4) ◽  
pp. 769-773
Author(s):  
F. Fluerenbrock

Mixtures containing steam, water, and solids develop when processing ore slurries at elevated temperature and pressure. Based on homogeneous one-dimensional three-phase flow theory equations are derived for pressure gradient, choking velocity, and sonic velocity of a steam-water-solids mixture flowing in a pipe. It is concluded that a quasi-choking condition may occur when the flow changes from subcooled to flashing conditions. [S0098-2202(00)00104-8]


Sign in / Sign up

Export Citation Format

Share Document