Application of H∞ Control to Improve the Current and Speed Loops of Switched Reluctance Motor Drives

2000 ◽  
Vol 123 (3) ◽  
pp. 363-369
Author(s):  
Mi-Ching Tsai

In this paper the H∞ robust control technique is applied to design a switched reluctance motor drive where the rotor position sensor provides just six pulses per revolution. A control system analyzer is used to obtain the frequency responses at each design step. To reduce the effect of the inherent phase inductance variations, an H∞ two-degree-of-freedom control scheme is designed in the current-loop of the drive to achieve the demanding time-response specifications. In order to have a good load torque disturbance rejection ability, the H∞ loop shaping procedure is employed to construct a lead-lag type controller in the speed-loop of the drive. The designed H∞ controllers are evaluated in real-time experiments with a digital signal processor (DSP). The results demonstrate the effectiveness of the proposed strategy in comparison with that of a conventional design.

2008 ◽  
Vol 2008 ◽  
pp. 1-11 ◽  
Author(s):  
M. Alrifai ◽  
M. Zribi ◽  
R. Krishnan ◽  
M. Rayan

A speed control algorithm is proposed for variable speed switched reluctance motor (SRM) drives taking into account the effects of mutual inductances. The control scheme adopts two-phase excitation; exciting two adjacent phases can overcome the problems associated with single-phase excitation such as large torque ripple, increased acoustic noise, and rotor shaft fatigues. The effects of mutual coupling between two adjacent phases and their contribution to the generated electromagnetic torque are considered in the design of the proposed control scheme for the motor. The proposed controller guarantees the convergence of the currents and the rotor speed of the motor to their desired values. Simulation results are given to illustrate the developed theory; the simulation studies show that the proposed controller works well. Moreover, the simulation results indicate that the proposed controller is robust to changes in the parameters of the motor and to changes in the load torque.


1984 ◽  
Vol 131 (6) ◽  
pp. 263 ◽  
Author(s):  
W.F. Ray ◽  
R.M. Davis ◽  
P.L. Lawrenson ◽  
J.M. Stephenson ◽  
N.N. Fulton ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document