A Linear Stability Analysis for an Improved One-Dimensional Two-Fluid Model

2003 ◽  
Vol 125 (2) ◽  
pp. 387-389 ◽  
Author(s):  
Jin Ho Song

A linear stability analysis is performed for a two-phase flow in a channel to demonstrate the feasibility of using momentum flux parameters to improve the one-dimensional two-fluid model. It is shown that the proposed model is stable within a practical range of pressure and void fraction for a bubbly and a slug flow.

Author(s):  
Avinash Vaidheeswaran ◽  
William D. Fullmer ◽  
Krishna Chetty ◽  
Raul G. Marino ◽  
Martin Lopez de Bertodano

The one-dimensional fixed-flux two-fluid model (TFM) is used to analyze the stability of the wavy interface in a slightly inclined pipe geometry. The model is reduced from the complete 1-D TFM, assuming a constant total volumetric flux, which resembles the equations of shallow water theory (SWT). From the point of view of two-phase flow physics, the Kelvin-Helmholtz instability, resulting from the relative motion between the phases, is still preserved after the simplification. Hence, the numerical fixed-flux TFM proves to be an effective tool to analyze local features of two-phase flow, in particular the chaotic behavior of the interface. Experiments on smooth- and wavy-stratified flows with water and gasoline were performed to understand the interface dynamics. The mathematical behavior concerning the well-posedness and stability of the fixed-flux TFM is first addressed using linear stability theory. The findings from the linear stability analysis are also important in developing the eigenvalue based donoring flux-limiter scheme used in the numerical simulations. The stability analysis is extended past the linear theory using nonlinear simulations to estimate the Largest Lyapunov Exponent which confirms the non-linear boundedness of the fixed-flux TFM. Furthermore, the numerical model is shown to be convergent using the power spectra in Fourier space. The nonlinear results are validated with the experimental data. The chaotic behavior of the interface from the numerical predictions is similar to the results from the experiments.


Author(s):  
David Heinze ◽  
Thomas Schulenberg ◽  
Lars Behnke

A simulation model for the direct contact condensation of steam in subcooled water is presented that allows determination of major parameters of the process, such as the jet penetration length. Entrainment of water by the steam jet is modeled based on the Kelvin–Helmholtz and Rayleigh–Taylor instability theories. Primary atomization due to acceleration of interfacial waves and secondary atomization due to aerodynamic forces account for the initial size of entrained droplets. The resulting steam-water two-phase flow is simulated based on a one-dimensional two-fluid model. An interfacial area transport equation is used to track changes of the interfacial area density due to droplet entrainment and steam condensation. Interfacial heat and mass transfer rates during condensation are calculated using the two-resistance model. The resulting two-phase flow equations constitute a system of ordinary differential equations, which is solved by means of the explicit Runge–Kutta–Fehlberg algorithm. The simulation results are in good qualitative agreement with published experimental data over a wide range of pool temperatures and mass flow rates.


Author(s):  
Youn-Gyu Jung ◽  
Moon-Sun Chung ◽  
Sung-Jae Yi

This study discusses on the implementation of an upwind method for a one-dimensional two-fluid model including the surface tension effect in the momentum equations. This model consists of a complete set of six equations including two-mass, two-momentum, and two-internal energy conservation equations having all real eigenvalues. Based on this equation system with upwind numerical method, the present authors first make a pilot code and then solve some benchmark problems to verify whether this model and numerical method is able to properly solve some fundamental one-dimensional two-phase flow problems or not.


2010 ◽  
Author(s):  
Raad I. Issa ◽  
Liejin Guo ◽  
D. D. Joseph ◽  
Y. Matsumoto ◽  
Y. Sommerfeld ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document