Load Distribution in Cylindrical Worm Gears

2003 ◽  
Vol 125 (2) ◽  
pp. 356-364 ◽  
Author(s):  
Vilmos Simon

A method for the determination of load sharing between the instantaneously engaged worm threads and gear teeth, for the calculation of load distribution along the teeth and transmission errors in different types of cylindrical worm gears is presented. The method covers both cases—that of the theoretical line and point contact. The bending and shearing deflections of worm thread and gear tooth, the local contact deformations of the mating surfaces, the axial deformations of worm body, gear body bending and torsion, deflections of the supporting shafts, and the manufacturing and alignment errors of worm and gear are included. Based on the real load distribution the tooth contact pressure is calculated, in the case of point contact in two different ways, and the obtained results are compared. Also, the total transmission error, consisting of the kinematical transmission error due to the mismatch of the worm gear drive and of the transmission error caused by the deflections of worm thread and gear teeth, is calculated. The method is implemented by a computer program. By using this program the influence of the type of worm gear drive and of design and manufacturing parameters on load distribution and transmission errors is investigated and discussed.

Author(s):  
Vilmos V. Simon

Abstract A method for the determination of load sharing between the instantaneously engaged worm threads and gear teeth, for the calculation of load distribution along the teeth and transmission errors in different types of cylindrical worm gears is presented. The method covers both cases — that of the theoretical line and point contact. The bending and shearing deflections of worm thread and gear tooth, the local contact deformations of the mating surfaces, the axial deformations of worm body, gear body bending and torsion, deflections of the supporting shafts, and the manufacturing and alignment errors of worm and gear are included. Based on the real load distribution the tooth contact pressure is calculated, in the case of point contact in two different ways, and the obtained results are compared. Also, the total transmission error, consisting of the kinematical transmission error due to the mismatch of the worm gear drive and of the transmission error caused by the deflections of worm thread and gear teeth, is calculated. The method is implemented by a computer program. By using this program the influence of the type of worm gear drive and of design and manufacturing parameters on load distribution and transmission errors is investigated and discussed.


Author(s):  
I. H. Seol ◽  
Faydor L. Litvin

Abstract The worm and worm-gear tooth surfaces of existing design of Flender gear drive are in line contact at every instant and the gear drive is very sensitive to misalignment. Errors of alignment cause the shift of the bearing contact and transmission errors. The authors propose : (1) Methods for computerized simulation of meshing and contact of misaligned worm-gear drives of existing design (2) Methods of modification of geometry of worm-gear drives that enable to localize and stabilize the bearing contact and reduce the sensitivity of drives to misalignment (3) Methods for computerized simulation of meshing and contact of worm-gear drives with modified geometry The proposed approach was applied as well for the involute (David Brown) and Klingelnberg type of worm-gear drives. Numerical examples that illustrate the developed theory are provided.


Author(s):  
X. Wang ◽  
L. Morrish

Transmission error (TE) is an important transmission parameter for precision worm gears. Modern cutting methods in conjunction with modern software allow manufacturers to deliver worm gear products of high accuracy to the highly competitive market. However, the initial shape of a bronze wheel tooth changes dramatically due to bedding-in and wear when gears mesh under load, and hence transmission characteristics change. A computer program is being developed to predict wear during bedding-in and constant wear rate stages for involute worm gears. A progressive wear over given number of tooth engagements is estimated using both the available experimental wear data and theoretical considerations. Being subtracted from an “as-cut” geometry, a new shape of worm wheel tooth surface can be predicted. The calculations can be executed iteratively for as many wear steps as necessary. The model takes load sharing and contact stress distribution into account to estimate the lubrication oil film thickness and wear intensity. Contact patterns, TE, load cycles and meshing stiffness are also modeled. A comparison between theoretical wear predictions and experimental wear data is made. Predictions of wear and transmission errors are useful for optimization of existing worm gear design and for development of worm gears of new designs.


1995 ◽  
Vol 117 (2A) ◽  
pp. 262-268 ◽  
Author(s):  
F. L. Litvin ◽  
Jui-Sheng Chen ◽  
T. M. Sep ◽  
Jyh-Chiang Wang

A computerized investigation of the influence of alignment errors on the transmission errors and the shift of the bearing contact is performed. The investigation is performed for an imaginary hypoid gear drive with conjugate tooth surfaces. The transmission error functions caused by misalignment are shown to be periodic discontinuous almost linear functions with the frequency of the cycle of meshing. The above functions can be totally absorbed by a predesigned parabolic function. The shift of the bearing contact caused by misalignment has been determined as well. The investigation is based on computerized simulation of meshing and contact of gear tooth surfaces. The machine-tool settings for the generation of the designed gear drive have been determined. A numerical example that illustrates the developed theory is given.


Author(s):  
Vilmos Simon

Abstract A modified new type of double enveloping worm gearing is developed. The gear tooth surface is generated by a flying tool whose cutting edge has the modified profile of the entering edge of the worm, and the worm surface has a straight-lined axial profile and circular lead changed to the established rule. The same rule governs the motion of the flying tool in processing the gear teeth. To compare the performance characteristics of the classical and the modified new type of double enveloping worm gearings, the load distributions are calculated and the elastohydrodynamic analysis of lubrication is carried out for both types of worm gearings. The obtained results show the advantages of the new type of double enveloping worm gear drive.


1996 ◽  
Vol 118 (4) ◽  
pp. 551-555 ◽  
Author(s):  
I. H. Seol ◽  
F. L. Litvin

The worm and worm-gear tooth surfaces of existing worm-gear drive designs are in line contact at every instant and the gear drive is very sensitive to misalignment. Errors of alignment cause shifting of the bearing contact and transmission errors. Methods for computerized simulation of meshing and contact of misaligned worm-gear drives of existing design are proposed. Also, modification of worm-gear drive geometry that provides a localized and stable bearing contact with reduced sensitivity to misalignment is described. Methods for computerized simulation of meshing and contact of worm-gear drives with the existing and modified geometry are represented. Numerical examples that illustrate the developed theory are provided. The proposed approach has been applied for modification of involute, Klingelnberg and Flender type worm-gear drives.


1993 ◽  
Vol 115 (3) ◽  
pp. 496-501 ◽  
Author(s):  
V. Simon

A method for the determination of load sharing among the instantaneously engaged worm threads and gear teeth of double enveloping worm gears and for the calculation of load distribution along their instantaneous contact lines is presented. The bending and shearing deflection of worm thread and gear tooth, the contact deformation, the axial deformation of worm body, and the manufacturing and alignment errors of worm and gear are included. The obtained system of integral equations is solved by using approximations and an iterative technique. The corresponding computer program is developed. By using this program, the load distribution in the classical and in a new type of double enveloping worm gear drives is calculated. The influence of design parameters on load distribution factor and on maximum tooth pressure is investigated and discussed.


1995 ◽  
Vol 117 (2A) ◽  
pp. 254-261 ◽  
Author(s):  
F. L. Litvin ◽  
N. X. Chen ◽  
J. Lu ◽  
R. F. Handschuh

An approach for the design and generation of low-noise helical gears with localized bearing contact is proposed. The approach is applied to double circular arc helical gears and modified involute helical gears. The reduction of noise and vibration is achieved by application of a predesigned parabolic function of transmission errors that is able to absorb a discontinuous linear function of transmission errors caused by misalignment. The localization of the bearing contact is achieved by the mismatch of pinion-gear tooth surfaces. Computerized simulation of meshing and contact of the designed gears demonstrated that the proposed approach will produce a pair of gears that has a parabolic transmission error function even when misalignment is present. Numerical examples for illustration of the developed approach are given.


2004 ◽  
Vol 127 (4) ◽  
pp. 646-655 ◽  
Author(s):  
Vilmos Simon

A method for the determination of optimal tooth modifications in hypoid gears based on improved load distribution and reduced transmission errors is presented. The modifications are introduced into the pinion tooth surface by using a cutter with bicircular profile and optimal diameter. In the optimization of tool parameters the influence of shaft misalignments of the mating members is included. As the result of these modifications a point contact of the meshed teeth surfaces appears instead of line contact; the hypoid gear pair becomes mismatched. By using the method presented in (Simon, V., 2000, “Load Distribution in Hypoid Gears,” ASME J. Mech. Des., 122, pp. 529–535) the influence of tooth modifications introduced on tooth contact and transmission errors is investigated. Based on the results that was obtained the radii and position of circular tool profile arcs and the diameter of the cutter for pinion teeth generation were optimized. By applying the optimal tool parameters, the maximum tooth contact pressure is reduced by 16.22% and the angular position error of the driven gear by 178.72%, in regard to the hypoid gear pair with a pinion manufactured by a cutter of straight-sided profile and of diameter determined by the commonly used methods.


Sign in / Sign up

Export Citation Format

Share Document