distribution factor
Recently Published Documents


TOTAL DOCUMENTS

207
(FIVE YEARS 67)

H-INDEX

13
(FIVE YEARS 3)

Author(s):  
Prakash Kerur ◽  
R. L. Chakrasali

The major challenges in deregulated system are determination of available transfer capability on the interconnected transmission lines. Electricity industry deregulation is the required for creating a competitive market throughout the world, which instigate new technical issues to market participants and Power System Operators (PSO). Power transfer capability is a crucial parameter to decide the power flow in the lines for further transactions and the estimation of Transfer Capability decides the power transactions based on the safety and ability of the system. This parameter will decide if an interconnected network could be reliable for the transfer of bulk power between two different areas of the network without causing risk to system consistency. The Power Transfer Distribution Factor (PTDF) is the sensitivity index, which decides the transfer capability in the interconnected network under deregulated power systems. This experiment is conducted on IEEE-6 bus system using Power World Simulator to determine the transfer capability in deregulated system under line outage condition.


Author(s):  
Arthur da Silva Rebouças ◽  
José Neres da Silva Filho ◽  
Rodrigo Barros ◽  
Yngrid Rayane Freitas Nascimento ◽  
Pedro Mitzcun Coutinho

abstract: The present study focuses on comparative parametric analysis of curved precast concrete bridges using straight and curved I-girders. The live load bending moment distribution for girders was studied using the bridge curvature and its relationship with the results obtained for a straight bridge. FEM 3D models were developed with restrictions on the transverse live load positions and with two different load models types: HL-93 (AASHTO) and TB-450 (NBR 7188, 2013). The parametric analysis results were calculated using the Modification Factor (MF) and the Bending Moment Distribution Factor (BMDF), calculated from the structural analysis of each model at the midspan. Globally, an increase was found in the total bending moment for the curved bridge models in relation to the straight bridge. In the examples herein studied, the larger the bending radius, the larger the maximal bending moment in the bridge center. For the external girders, the MF increases with the increase of the L/R. For the internal ones, the MF decreases with the increase of the L/R. In addition, the occurrence of “Load Shift” was different from the rigid body behavior, for there was demonstrated a different bending moment variation between external girder (G1) in relation to its adjacent (G2). Therefore, the structural behavior of straight (SG) and curved girders (CG) was analyzed, revealing that, in the SG, a significant gap occurred in the BMDF between G1 and G2 girders for all curvatures. For L/R = 0.6, it caused a difference of 17.8% in the BMDF between the G1 and G2 girders, while on the curved girders, a difference of only 6.6% was found.


Author(s):  
Heloisa Fuganti Campos ◽  
André Lucas Bellon ◽  
Eduardo Reis de Lara e Silva ◽  
Maurício Villatore Junior

Abstract The partial replacement of clinker by complementary cementitious materials can significantly contribute to the reduction of carbon emissions in the production of concrete. Another alternative to reduce these emissions is to increase the efficiency of the concrete, achieving higher compressive strength with lower consumption of cement. Particle packing models are efficient tools to optimize the composition of the matrix and contribute to the production of more eco-efficient concretes. In this context, the objective of the present study is evaluating the production of concretes with partial replacement of cement by stone powder, optimized by Alfred’s particle packing model, seeking to reduce cement consumption and CO2 emissions per MPa of compressive strength. The replacement content of cement by stone powder was 20% by mass (equivalent to 22.4% by volume). Concretes were produced with different distribution factor (q) - 0.37; 0.21; 0.45 - to verify the influence of fines on the flow between particles and on the efficiency of the produced concrete. The analyses were carried out in terms of properties in the fresh state, hardened state, and sustainability parameters (cement consumptions and CO2 emissions). The application of the proposed method resulted in a higher compressive strength than the expected for the water/cement ratio used (0.5). The most efficient concrete reached the compressive strength of 68 MPa with 240 kg/m3 of cement, which represents 3.5 kg of cement/m3/MPa and 3.1 kg of CO2/m3/MPa, a value below the references found in the literature for conventional concretes. Therefore, the proposed method allows to produce more eco-efficient concrete, contributing to the use of waste and reducing CO2 emissions.


Author(s):  
Ming Shen ◽  
Ye Chen ◽  
Lijuan Ge ◽  
Xinglin Wang

Abstract Propagation dynamics of two-dimensional Airy Gaussian beam and Airy Gaussian vortex beam are investigated numerically in local and nonlocal nonlinear media. The self-healing and collapse of the beam depend crucially on the distribution factor $b$ and the topological charge $m$. With the help of nonlocality, stable Airy Gaussian beam and Airy Gaussian vortex beam with larger amplitude can be obtained, which always collapse in local nonlinear media. When the distribution factor $b$ is large enough, the Airy Gaussian vortex beam will transfer into quasi-vortex solitons in nonlocal nonlinear media.


2021 ◽  
Author(s):  
Jiang Hu ◽  
Wei Li ◽  
Wenxia Liu ◽  
Xianggang He ◽  
Yu Zhang

With the gradual reform and development of the power grid, it is of great significance to study how to effectively identify and evaluate the weak links of the power grid for the actual planning, construction, and operation of the power grid. This paper analyzed the power grid’s historical component data and real-time operation state parameters. We established a weak link identification model based on Bayesian reasoning. Firstly, we constructed the node branch Bayesian network according to the network topology relationship. The power transmission distribution factor is modified according to the historical operation load of the grid components, and the conditional probability table is calculated based on the grid structure; finally, we used the maximum possible explanation algorithm in the Bayesian network. The weakness degree of all components in the network is calculated, and the maximum probability weak link sequence is obtained. The correctness and effectiveness of the proposed method are verified by IEEE 39 bus simulation and regional power grid data.


2021 ◽  
Vol 17 (3-4) ◽  
pp. 111-119
Author(s):  
Jianwei Huang

Using precast concrete elements in bridge structures has emerged as an economic and durable solution to enhance the sustainability of bridges. The northeast extreme tee (NEXT) beams were recently developed for accelerated bridge construction by the Precast/Prestressed Concrete Institute (PCI). To date, several studies on the live load distribution factor (LLDF) for moment in NEXT F beam bridges have been reported. However, the LLDFs for shear in NEXT F beam bridges are still unclear. In this paper, the lateral distributions of live load shear in NEXT F beam bridges were examined through a comprehensive parametric study. The parameters covered in this study included bridge section, span length, beam section, number of beams, and number of lanes loaded. A validated finite element (FE) modeling technique was employed to analyze the shear behavior of NEXT F beam bridges under the AASHTO HL-93 loading and to determine the LLDFs for shear in NEXT beam bridges. A method for computing the FE-LLDF for shear was proposed for NEXT beam bridges. Results from this study showed that the FE-LLDFs have a similar trend as the AASHTO LFRD-LLDFs. However, it was observed that some LRFD-LLDFs are lower than the FE-LLDFs by up to 14.1%, which implied using the LRFD-LLDFs for shear could result in an unsafe shear design for NEXT beam bridges. It is recommended that a factor of 1.2 be applied to the LRFD-LLDF for shear in NEXT F beam bridges for structural safety and design simplicity.


2021 ◽  
Vol 11 (22) ◽  
pp. 11010
Author(s):  
Sung-Wan Kim ◽  
Da-Woon Yun ◽  
Dong-Uk Park ◽  
Sung-Jin Chang ◽  
Jae-Bong Park

Maintenance of bridges in use is essential and measuring the live load distribution factor (LLDF) of a bridge to examine bridge integrity and safety is important. A vehicle loading test has been used to measure the LLDF of a bridge. To carry this out on a bridge in use, traffic control is required because loading must be performed at designated positions using vehicles whose details are known. This makes it difficult to measure LLDF. This study proposed a method of estimating the LLDF of a bridge using the vertical displacement response caused by traveling vehicles under ambient vibration conditions in the absence of vehicle control. Since the displacement response measured from a bridge included both static and dynamic components, the static component required for the estimation of LLDF was extracted using empirical mode decomposition (EMD). The vehicle loading and ambient vibration tests were conducted to verify the validity of the proposed method. It was confirmed that the proposed method can effectively estimate the LLDF of a bridge if the vehicle type and driving lane on the bridge are identified in the ambient vibration test.


2021 ◽  
pp. 152808372110432
Author(s):  
Fatemeh Asoodeh ◽  
Mohammad Aghvami-Panah ◽  
Saeed Salimian ◽  
Mohammadreza Naeimirad ◽  
Hamed khoshnevis ◽  
...  

This article aims to investigate the effect of dispersion and uniformity of fiber length distribution on the rheological and mechanical behavior of polypropylene reinforced with short glass fiber. The composites were prepared through melt compounding with three various glass fiber concentrations using a twin-screw extruder. Multiple extrusion processing was used to alter and manipulate the fibers’ length inside the composites. The fiber length distribution was analyzed via the photomicrograph technique. Rheological measurements indicated that the molten samples were visco-plastic fluids and the Herschel–Bulkley model is the best model for fitting on the rheological behavior diagram. Variables of the fitted model are noticeably altered by the fiber length distribution. Moreover, rheological assessments revealed that the non-Newtonian behavior of the molten composites significantly diminished after the second extrusion processing, while it did not have much effect on the fiber length reduction. In the second phase, tensile and flexural properties were determined to detect the mechanical properties. The results indicated that the tensile strength of the composite has a direct relation with the fiber length distribution factor while the flexural strength is independent of fiber length. Furthermore, the highest tensile and flexural strength attained from the composite containing the highest fiber volume fraction.


2021 ◽  
Vol 13 (3) ◽  
pp. 206-212
Author(s):  
Lidiia Oryshchyn-Buzhdyhan ◽  

Sense of control over life events which happen in everyday life (personal and social) can play a role of a self-defence mechanism in stress situations that occurs in a crisis society. The research suggests that process of searching ways and methods to take control over stress events not only is a process of psychological adaptation to unusual stress situation but also is a natural instinct is presented in everyone. Interestingly, there is a lack of empirical studies of subjective sense of being in control and indicators of sense of personal control among young Ukrainians. The purpose of this article is to investigate indicators of sense of control factors’ distribution in two independent study of young Lviv citizens. The study uses established metrics called «subjective control measure». Two studies were conducted for proper assessment of working hypothesis. 90 participants of different sexes, aged from 14 to 35, who work and study in Lviv, took part in the first study. 68 female and male participants aged from 16 to 17, who were students of Lviv secondary school № 2, took part in the second study. The null hypothesis suggests that participants from the first and second study will have different subjective sense of control factors’ distribution. Factor analysis of the first study (2016) participants highlighted the following sense of control factors: measure of personal presentation in control, control factors for outside social world, methods of upbringing (education) and life principles, quality of implementation controls, future without obeying, pedantic control, democratic control, external presentation control, work process management control. In the second study (2017), factor analysis showed the following six sense of control indicators: structured progressive control, perfection business control, external presentation control, work accuracy control, over control, parental control. Next steps for the study will be the analysis of sense of control in participants of different ages on the basis of the improved «subjective control measure».


Sign in / Sign up

Export Citation Format

Share Document