gear pair
Recently Published Documents


TOTAL DOCUMENTS

691
(FIVE YEARS 190)

H-INDEX

31
(FIVE YEARS 6)

2022 ◽  
Vol 166 ◽  
pp. 108436
Author(s):  
Vikash Kumar ◽  
Anurag Kumar ◽  
Sanjeev Kumar ◽  
Somnath Sarangi
Keyword(s):  

Author(s):  
Yang Hsueh-Cheng ◽  
Zhong-Wei Huang

In this paper, two normal imaginary helical rack cutters were first established. One of these cutters is a skewed-rack cutter with an asymmetrical straight edge. The other is a rack cutter with an asymmetric parabolic profile. Second, the gear’s tooth surface of the asymmetric parabolic rack cutter is modified to be barrel-shaped based on a variable modulus. The tooth thickness of the gear is gradually reduced along the face width of the tooth from the middle of the tooth surface. Then the coordinate relationship between the gears’ blanks and the imaginary helical rack cutters was established. Through the differential geometry, crowned and uncrowned helical gear pairs were generated. Because of human factors, when the gear pair is installed, it is easy to cause the gear pair edge contact. It is necessary to add artificial assembly error settings through the tooth contact analysis to investigate the kinematic errors and contact conditions of the crowned and uncrowned helical gear pair. The mathematical models and analysis methods proposed for the crowned imaginary rack cutter using variable modulus should be useful for the design and production of double crowned helical gears with asymmetric parabolic teeth.


2022 ◽  
Vol 14 (1) ◽  
pp. 168781402110729
Author(s):  
Wanhua Zhao ◽  
Zhuang Liu ◽  
Yong Yang ◽  
Zheng Zou ◽  
Ruizhi Shu ◽  
...  

By considering the uncertainness of initial measuring position of encoders and signal sidebands caused by the fault gear pair, this paper presented a new comprehensive harmonic analysis method for the transmission error of gear hobbing machine. Based on that, a test platform was established, in which two circle grating encoders were connected to the hob spindle and workpiece spindle respectively. With the help of this new harmonic analysis method as well as the self-developed test platform, a new improved transmission error fault diagnosis method was developed for the gear hobbing machines. To verify its accountability, a case study was conducted on a YS-type gear hobbing machine. According to the spectrum amplitude comparison and the analysis of harmonic frequency distribution, the fault transmission gear pair was successfully located. This improved transmission error source tracing method was very helpful for quantifying both the manufacturing qualities and assembly qualities of parts and locating potential error source for new gear hobbing machines.


Author(s):  
Ramesh Kurbet ◽  
V. Doddaswamy ◽  
C.M. Amruth ◽  
MohammedRafi H. Kerur ◽  
S. Ghanaraja

Author(s):  
Ata Donmez ◽  
Ahmet Kahraman

Abstract Dynamic response of a gear pair subjected to input and output torque or velocity fluctuations is examined analytically. Such motions are commonly observed in various powertrain systems and identified as gear rattle or hammering motions with severe noise and durability consequences. A reduced-order torsional model is proposed along with a computationally efficient piecewise-linear solution methodology to characterize the system response including its sensitivity to excitation parameters. Validity of the proposed model is established through comparisons of its predictions to measurements from a gear rattle experimental set-up. A wide array of nonlinear behavior is demonstrated through presentation of periodic and chaotic responses in the forms of phase plots, Poincaré maps, and bifurcation diagrams. The severity of the resultant impacts on the noise outcome is also assessed through a rattle severity index defined by using the impact velocities.


Author(s):  
Chao Lin ◽  
Yu Wang ◽  
Yanan Hu ◽  
Yongquan Yu

A new type of compound transmission gear pair was put forward, called eccentric curve-face gear pair with curvilinear-shaped teeth. It could realize reciprocating motion of the gear shaft when the intersecting shafts achieve transferring motion and power through its unique tooth profile. The compound transmission principle of this gear pair was fully established based on the profile-closure process of axial direction and meshing process of the end face. The tooth surfaces of the eccentric curve-face gear and non-circular gear were generated. The contact paths of different teeth were obtained, and the compound transmission principle of eccentric curve-face gear pair with curvilinear-shaped teeth was verified by tooth contact analysis. By analyzing the mechanical characteristics of time-varying contact points, the changing rule of contact force was studied, and the compound transmission principle of the gear pair was further revealed from mechanics. Moreover, the experimental platform for transmission of eccentric curve-face gear pair with curvilinear-shaped teeth was set up to measure the motion law and contact area, and the correctness of the analysis results was verified.


Energies ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 8564
Author(s):  
Xiaozhou Hu ◽  
Jie Chen ◽  
Minggui Wu ◽  
Jianing Wang

To predict the temperature distribution of the tooth surface of a herringbone gear pair, a numerical method for the determination of frictional heat generation was proposed by establishing a thermal elastohydrodynamic lubrication (TEHL) model in the meshing zone taking surface roughness into account. According to the real micro topography of the tooth surface measured by a non-contact optical system and loaded tooth contact analysis, the friction coefficient was obtained by a TEHL analysis and then the heat generation in the contact zone was determined. With the combination of heat generation and heat dissipation analysis, the single tooth model of the herringbone gear pair due to the finite element method (FEM) was proposed and the steady-state temperature distribution of the tooth surfaces was predicted by FEM simulations. The simulation and the experimental results demonstrated good agreement, which verified the feasibility of the present numerical method.


2021 ◽  
Vol 20 (4) ◽  
pp. 637-648
Author(s):  
R. Masovic ◽  
T. Breski ◽  
I. Cular ◽  
K. Vuckovic ◽  
D. Zezelj
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document