A Maximum Entropy Solution for a Two-Dimensional Inverse Heat Conduction Problem

2003 ◽  
Vol 125 (6) ◽  
pp. 1197-1205 ◽  
Author(s):  
Sun Kyoung Kim ◽  
Woo Il Lee

A solution scheme based on the maximum entropy method (MEM) for the solution of two-dimensional inverse heat conduction problems is established. MEM finds the solution which maximizes the entropy functional under the given temperature measurements. The proposed method converts the inverse problem to a nonlinear constrained optimization problem. The constraint of the optimization problem is the statistical consistency between the measured temperature and the estimated temperature. Successive quadratic programming (SQP) facilitates the numerical estimation of the maximum entropy solution. The characteristic feature of the proposed method is investigated with the sample numerical results. The presented results show considerable enhancement in resolution for stringent cases in comparison with a conventional method.

2011 ◽  
Vol 291-294 ◽  
pp. 1657-1661 ◽  
Author(s):  
Tao He ◽  
Xi Qun Lu ◽  
Yi Bin Guo

An efficient method utilizing the concept of inverse heat conduction is presented for the thermal analysis of pistons based on application to the piston head of a marine diesel engine. An inverse heat conduction problem is established in the form of an optimization problem. In the optimization problem, the convection heat transfer coefficient(HTC)on the top side of the piston is defined as the design variable, while the error between the measured and analysed temperatures is defined as objective function. For the optimization, an axi-symmetrical finite element conduction model is presented. The optimum distribution of the HTC at the top side of piston is successfully determined through a numerical implementation. The temperature obtained via an analysis using the optimum HTC is compared with the measured temperature, and reasonable agreement is obtained. The present method can be effectively utilized to analyze the temperature distribution of engine pistons.


1989 ◽  
Vol 111 (2) ◽  
pp. 218-224 ◽  
Author(s):  
E. P. Scott ◽  
J. V. Beck

Various methods have been proposed to solve the inverse heat conduction problem of determining a boundary condition at the surface of a body from discrete internal temperature measurements. These include function specification and regularization methods. This paper investigates the various components of the regularization method using the sequential regularization method proposed by Beck and Murio (1986). Specifically, the effects of the regularization order and the influence of the regularization parameter are analyzed. It is shown that as the order of regularization increases, the bias errors decrease and the variance increases. Comparatively, the zeroth regularization has higher bias errors and the second-order regularization is more sensitive to random errors. As the regularization parameter decreases, the sensitivity of the estimator to random errors is shown to increase; on the other hand, the bias errors are shown to decrease.


2017 ◽  
Vol 139 (7) ◽  
Author(s):  
M. Tadi

This note is concerned with a new method for the solution of an elliptic inverse heat conduction problem (IHCP). It considers an elliptic system where no information is given at part of the boundary. The method is iterative in nature. Starting with an initial guess for the missing boundary condition, the algorithm obtains corrections to the assumed value at every iteration. The updating part of the algorithm is the new feature of the present algorithm. The algorithm shows good robustness to noise and can be used to obtain a good estimate of the unknown boundary condition. A number of numerical examples are used to show the applicability of the method.


Sign in / Sign up

Export Citation Format

Share Document