Forward Problem Singularities of Manipulators Which Become PS-2RS or 2PS-RS Structures When the Actuators are Locked

2004 ◽  
Vol 126 (4) ◽  
pp. 640-645 ◽  
Author(s):  
Raffaele Di Gregorio

The instantaneous forward problem (IFP) singularities of a parallel manipulator (PM) must be determined during the manipulator design and avoided during the manipulator operation, because they are configurations where the end-effector pose (position and orientation) cannot be controlled by acting on the actuators any longer, and the internal loads of some links become infinite. When the actuators are locked, PMs become structures consisting of one rigid body (platform) connected to another rigid body (base) by means of a number of kinematic chains (limbs). The geometries (singular geometries) of these structures where the platform can perform infinitesimal motion correspond to the IFP singularities of the PMs the structures derive from. This paper studies the singular geometries both of the PS-2RS structure and of the 2PS-RS structure. In particular, the singularity conditions of the two structures will be written in a new form. This new form will directly bring to a new geometric interpretation of their singularity conditions and to the exhaustive enumeration of the geometric conditions identifying their singular geometries. Such an enumeration will reveal that some geometric conditions were not identified in the literature. Finally, the use of the obtained results in the design of parallel manipulators which become either PS-2RS or 2PS-RS structures, when the actuators are locked, will be illustrated.

Author(s):  
Raffaele Di Gregorio

The instantaneous forward problem (IFP) singularities of a parallel manipulator (PM) must be determined during the manipulator design and avoided during the manipulator operation, because they are configurations where the end-effector pose (position and orientation) cannot be controlled by acting on the actuators any longer, and the internal loads of some links become infinite. When the actuators are locked, PMs become structures consisting of one rigid body (platform) connected to another rigid body (base) by means of a number of kinematic chains (limbs). The geometries (singular geometries) of these structures where the platform can perform infinitesimal motion correspond to the IFP singularities of the PMs the structures derive from. This paper studies the singular geometries both of the PS-2RS structure and of the 2PS-RS structure. In particular, the singularity conditions of the two structures will be determined. Moreover, the geometric interpretation of their singularity conditions will be provided. Finally, the use of the obtained results in the design of parallel manipulators which become either PS-2RS or 2PS-RS structures, when the actuators are locked, will be illustrated.


Author(s):  
Raffaele Di Gregorio

The instantaneous forward problem (IFP) singularities of a parallel manipulator (PM) must be determined during the manipulator design and avoided during the manipulator operation, because they are configurations where the end-effector pose (position and orientation) cannot be controlled by acting on the actuators any longer, and the internal loads of some links become infinite. When the actuators are locked, PMs become structures consisting of one rigid body (platform) connected to another rigid body (base) by means of a number of kinematic chains (legs). The geometries (singular geometries) of these structures where the platform can perform infinitesimal motion correspond to the IFP singularities of the PMs the structures derive from. In this paper, the singular geometries of the structures with topology SX-YS-ZS (S stands for spherical pair, whereas X, Y and Z stand for three generic one-dof pair which may be or may not be of the same type) are studied with a unified approach. The presented approach leads to obtain an analytic condition which allows all the singular geometries of these structures to be determined. Moreover, the geometric interpretation of the found singularity condition and the exhaustive enumeration of the types of singular geometries is provided. Finally, the use of the presented results in the design of the manipulators which become one structure with topology SX-YS-ZS when the actuators are locked is discussed.


Robotics ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 31
Author(s):  
Alexey Fomin ◽  
Anton Antonov ◽  
Victor Glazunov ◽  
Yuri Rodionov

The proposed study focuses on the inverse and forward kinematic analysis of a novel 6-DOF parallel manipulator with a circular guide. In comparison with the known schemes of such manipulators, the structure of the proposed one excludes the collision of carriages when they move along the circular guide. This is achieved by using cranks (links that provide an unlimited rotational angle) in the manipulator kinematic chains. In this case, all drives stay fixed on the base. The kinematic analysis provides analytical relationships between the end-effector coordinates and six controlled movements in drives (driven coordinates). Examples demonstrate the implementation of the suggested algorithms. For the inverse kinematics, the solution is found given the position and orientation of the end-effector. For the forward kinematics, various assembly modes of the manipulator are obtained for the same given values of the driven coordinates. The study also discusses how to choose the links lengths to maximize the rotational capabilities of the end-effector and provides a calculation of such capabilities for the chosen manipulator design.


Author(s):  
Carlo Innocenti

Abstract The paper presents an original analytic procedure for unambiguously determining the relative position and orientation (location) of two rigid bodies based on the readings from seven linear transducers. Each transducer connects two points arbitrarily chosen on the two bodies. The sought-for rigid-body location simply results by solving linear equations. The proposed procedure is suitable for implementation in control of fully-parallel manipulators with general geometry. A numerical example shows application of the reported results to a case study.


Robotica ◽  
2002 ◽  
Vol 20 (4) ◽  
pp. 353-358 ◽  
Author(s):  
Raffaele Di Gregorio

In the literature, 3-RRPRR architectures were proposed to obtain pure translation manipulators. Moreover, the geometric conditions, which 3-RRPRR architectures must match, in order to make the end-effector (platform) perform infinitesimal (elementary) spherical motion were enunciated. The ability to perform elementary spherical motion is a necessary but not sufficient condition to conclude that the platform is bound to accomplish finite spherical motion, i.e. that the mechanism is a spherical parallel manipulator (parallel wrist). This paper demonstrates that the 3-RRPRR architectures matching the geometric conditions for elementary spherical motion make the platform accomplish finite spherical motion, i.e. they are parallel wrists (3-RRPRR wrist), provided that some singular configurations, named translation singularities, are not reached. Moreover, it shows that 3-RRPRR wrists belong to a family of parallel wrists which share the same analytic expression of the constraints which the legs impose on the platform. Finally, the condition that identifies all the translation singularities of the mechanisms of this family is found and geometrically interpreted. The result of this analysis is that the translation singularity locus can be represented by a surface (singularity surface) in the configuration space of the mechanism. Singularity surfaces drawn by exploiting the given condition are useful tools in designing these wrists.


2012 ◽  
Vol 4 (3) ◽  
Author(s):  
André Gallant ◽  
Roger Boudreau ◽  
Marise Gallant

In this work, a method is presented to geometrically determine the dexterous workspace boundary of kinematically redundant n-PRRR (n-PRRR indicates that the manipulator consists of n serial kinematic chains that connect the base to the end-effector. Each chain is composed of two actuated (therefore underlined) joints and two passive revolute joints. P indicates a prismatic joint while R indicates a revolute joint.) planar parallel manipulators. The dexterous workspace of each nonredundant RRR kinematic chain is first determined using a four-bar mechanism analogy. The effect of the prismatic actuator is then considered to yield the workspace of each PRRR kinematic chain. The intersection of the dexterous workspaces of all the kinematic chains is then obtained to determine the dexterous workspace of the planar n-PRRR manipulator. The Gauss divergence theorem applied to planar surfaces is implemented to compute the total dexterous workspace area. Finally, two examples are shown to demonstrate applications of the method.


Robotica ◽  
2004 ◽  
Vol 22 (4) ◽  
pp. 389-394 ◽  
Author(s):  
R. Di Gregorio

The 3-PS structure features one rigid body (platform) connected to another rigid body (base) by means of three kinematic chains (limbs) of type PS (P and S stand for prismatic pair and spherical pair, respectively). All the 3-degree-of-freedom parallel manipulators with three connectivity-5 limbs, each one constituted of one passive (i.e. not actuated) prismatic pair, one passive spherical pair and one actuated kinematic pair of any type, become 3-PS structures when the actuated pairs are locked. Direct kinematics of this class of manipulators is tied to the properties of the 3-PS structure. In particular, the direct position analysis is tied to the assembly modes of the 3-PS structure; whereas the determination of the singularities of the direct instantaneous problem is tied to the determination of the singular geometries of the 3-PS structure, where instantaneous relative motions between platform and base are possible. The solution of these two problems is necessary both for designing the manipulators and for controlling them during motion. This paper deal with the determination of the singular geometries of the 3-PS structure.


Author(s):  
J S Dai ◽  
N Holland ◽  
D R Kerr

This paper reviews a method of representing the finite twist motion of a rigid body, and applies this concept to the problem of describing the motion capabilities of planar serial manipulators. In particular, this finite twist representation describes the position and orientation of the end-effector link relative to a defined reference position and orientation. The transformations associated with the joint motions are used to investigate the range of end-effector motion, including the effects of limits of joint travel. The finite twist representations are then extracted from such transformations and presented in an image space so that the motion of the manipulator is fully characterized. Further, the reachable and dexterous workspaces are predicted by the same general means. Examples of planar serial manipulators with two (RR) and three revolute (RRR) joints are given to illustrate the approach.


2008 ◽  
Vol 131 (1) ◽  
Author(s):  
Jian Meng ◽  
Dongjun Zhang ◽  
Zexiang Li

Due to joint clearance, a parallel manipulator’s end-effector exhibits position and orientation (or collectively referred to as pose) errors of various degrees. This paper aims to provide a systematic study of the error analysis problem for a general parallel manipulator influenced by joint clearance. We propose an error prediction model that is applicable to planar or spatial parallel manipulators that are either overconstrained or nonoverconstrained. By formulating the problem as a standard convex optimization problem, the maximal pose error in a prescribed workspace can be efficiently computed. We present several numerical examples to show the applicability and the efficiency of the proposed method.


2012 ◽  
Vol 162 ◽  
pp. 194-203
Author(s):  
A. Chaker ◽  
A. Mlika ◽  
M.A. Laribi ◽  
L. Romdhane ◽  
S. Zeghloul

The 3-RRR spherical parallel manipulator is known to be highly overconstrained, which causes several problems of mounting the mechanism, but has the advantage of having high rigidity thus a good precision. Several works in the literature proposed non-overconstrained versions of this mechanism. However, very few works dealt with the problem of the consequence of modifying an overconstrained mechanism into a non-overconstrained one, mainly from an accuracy point of view. In this work, we present an analysis of the accuracy of four different non-overconstrained SPMs, i.e., 3-RSR, 3-RCC, 3-RRS, and 3-RUU. These four SPM are then evaluated in translational and rotational accuracy due to manufacturing errors. The error on the position and orientation of the end-effector, due to manufacturing errors, are computed in 100 different configurations within their workspace. These SPMs are then compared among each other and we showed that the 3-RRS has the best compromise between the translational and rotational accuracy.


Sign in / Sign up

Export Citation Format

Share Document