spherical parallel manipulator
Recently Published Documents


TOTAL DOCUMENTS

131
(FIVE YEARS 24)

H-INDEX

17
(FIVE YEARS 2)

Robotics ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 117
Author(s):  
David Feller ◽  
Christian Siemers

In this study, a novel design for a compact, lightweight, agile, omnidirectional three-legged robot involving legs with four degrees of freedom, utilizing an spherical parallel mechanism with an additional non-redundant central support joint for the robot hip structure is proposed. The general design and conceptual ideas for the robot are presented, targeting a close match of the well-known SLIP-model. CAD models, 3d-printed prototypes, and proof-of-concept multi-body simulations are shown, investigating the feasibility to employ a geometrically dense spherical parallel manipulator with completely spherically shaped shell-type parts for the highly force-loaded application in the legged robot hip mechanism. Furthermore, in this study, an analytic expression is derived, yielding the calculation of stress forces acting inside the linkage structures, by directly constructing the manipulator hip Jacobian inside the force domain.


2021 ◽  
Vol 11 (14) ◽  
pp. 6534
Author(s):  
Terence Essomba ◽  
Juan Sandoval ◽  
Med Amine Laribi ◽  
Chieh-Tsai Wu ◽  
Cyril Breque ◽  
...  

This paper deals with a robotic manipulator dedicated to craniotomy with a remote center of motion based on a Spherical Parallel Manipulator (SPM) architecture. The SPM is proposed to handle the drilling tool through the requested craniotomy Degrees of Freedom (DoF) with two rotations. The proposed architecture allows one degree of redundancy according to the total DoF. Thus, a first contribution of this work focuses on the experimental analysis of craniotomy surgery tasks. Secondly, its behavior is improved, taking advantage of the redundancy of the SPM using the spinning motion as a reconfiguration variable. The spinning angle modulation allows the reconfigurable manipulator to minimize its motor torques. A series of motion capture and force experimentations is performed for the analysis of the kinematic and force interaction characterizing Burr hole craniotomy procedures. Experimentations were carried out by a neurosurgeon on a human cadaver, ensuring highly realistic conditions.


Robotica ◽  
2021 ◽  
pp. 1-30
Author(s):  
Soheil Zarkandi

Abstract A comprehensive dynamic modeling and actuator torque minimization of a new symmetrical three-degree-of-freedom (3-DOF) 3-PṞR spherical parallel manipulator (SPM) is presented. Three actuating systems, each of which composed of an electromotor, a gearbox and a double Rzeppa-type driveshaft, produce input torques of the manipulator. Kinematics of the 3-PṞR SPM was recently studied by the author (Zarkandi, Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2020, https://doi.org/10.1177%2F0954406220938806). In this paper, a closed-form dynamic equation of the manipulator is derived with the Newton–Euler approach. Then, an optimization problem with kinematic and dynamic constraints is presented to minimize torques of the actuators for implementing a given task. The results are also verified by the SimMechanics model of the manipulator.


2020 ◽  
Vol 11 (2) ◽  
pp. 381-393
Author(s):  
Liangyi Nie ◽  
Huafeng Ding ◽  
Andrés Kecskeméthy ◽  
Jinqiang Gan ◽  
Jun Wang ◽  
...  

Abstract. Spherical parallel manipulators (SPMs) have a great potential for industrial applications of robot wrists, camera-orientating devices, and even sensors because of their special structure. However, increasing with the number of links, the kinematics analysis of the complex SPMs is formidable. The main contribution of this paper is to present a kind of 2 degree-of-freedom (DOF) seven-bar SPM containing two five-bar spherical loops, which has the advantages of high reaction speed, accuracy rating, and rigidity. And based on the unusual actuated choices and symmetrical loop structure, an approach is provided to identify singularities and branches of this kind of 2 DOF seven-bar SPM according to three following steps. Firstly, loop equations of the two five-bar spherical loops, which include all the kinematic characteristics of this SPM, are established with joint rotation and side rotation. Secondly, branch graphs are obtained by Maple based on the discriminants of loop equations and the concept of joint rotation space (JRS). Then, singularities are directly determined by the singular boundaries of the branch graphs, and branches are easily identified by the overlapping areas of JRS of two five-bar spherical loops. Finally, this paper distinguishes two types of branches of this SPM according to whether branch points exist to decouple the kinematics, which can be used for different performance applications. The proposed method is visual and offers geometric insights into understanding the formation of mobility using branch graphs. At the end of this paper, two examples are employed to illustrate the proposed method.


Author(s):  
Mohammad Sharifzadeh ◽  
Yuhao Jiang ◽  
Roozbeh Khodambashi ◽  
Daniel Aukes

Abstract This paper evaluates how laminated techniques may be used to replicate the performance of more traditionally manufactured robotic manipulators. This evaluation is conducted by addressing the advantages and challenges of laminated manufacturing techniques, specifcally mechanism durability. In this study, we propose a novel fabric-polyester hinge design with an improved life-span. We additionally provide an overview of the design and construction workfow for a laminated 2-DOF spherical parallel manipulator for use as a camera stabilizer. Using the proposed manipulator as a case study, we demonstrate that mechanisms fabricated with lamination techniques can achieve similar performance to devices made using conventional methods.


Robotics ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 62
Author(s):  
Houssem Saafi ◽  
Med Amine Laribi ◽  
Said Zeghloul

This paper deals with a special architecture of Spherical Parallel Manipulators (SPMs) designed to be a haptic device for a medical tele-operation system. This architecture is obtained by replacing the kinematic of one leg of a classical 3-RRR SPM (R for revolute joint). The Forward Kinematic Model (FKM) is particularly addressed to allow the new master device to control the motion of a slave surgical robot. For this purpose, three methods are presented to solve the FKM and compared based on the criterion of time consuming and accuracy. For each method, namely, classic FKM, Improved method and serial FKM, the resolution procedure is detailed and the experimental validation is presented. After comparison, the serial approach involving the use of three sensors located on one leg of the master device is revealed as the most suitable. Experimental validation of the real-time motion control is successfully performed using the serial FKM.


Author(s):  
Soheil Zarkandi

This paper introduces a novel three degree-of-freedom spherical parallel manipulator with 3-PRR topology, where P and R denote a curved prismatic joint and a revolute joint, respectively. The first revolute joint of each PRR leg is actuated via a double Rzeppa-type driveshaft, and hence underlined. The manipulator has at most eight working modes and eight assembly modes. However, only one working mode and one assembly mode of the manipulator are acceptable during its motion which can be easily identified. Singularity and kinematic dexterity analyses reveal that the proposed 3-PRR spherical parallel manipulator has no forward kinematic singularity for a wide range of rotation of the moving platform around its central axis. An optimal design of the manipulator is also presented having a workspace with good kinematic dexterity.


Sign in / Sign up

Export Citation Format

Share Document