scholarly journals Pebbles Making Waves

2008 ◽  
Vol 130 (02) ◽  
pp. 34-38
Author(s):  
Lee S. Langston

This paper describes various high-level nuclear researches including nuclear-fuelled pebbles that are being conducted across South Africa. The pebbles are ingenious industrial products, designed to passively limit the amount of heat unleashed by the nuclear fission reactions that drive the reactor. The spheres that give the pebble bed reactor its name enclose fissionable uranium inside layers that serve various roles, such as moderating fission, containing pressure, and accommodating deformation of the core. Nuclear-fuelled pebbles are introduced at the top of the reactor vessel and slowly wend their way down through the annular-packed bed under the action of gravity to the bottom of the reactor vessel. In a towering building at the headquarters of Nesca in Pelindaba, South Africa, reactor components are being tested for their ability to work with high-pressure helium. Those parts will go in the pebble bed modular reactor power plant to be constructed at Koeburg, near Cape Town. The plan of the pebble bed reactor power plant will use the helium coolant to run the turbine directly rather than heat a secondary fluid, as in a water reactor.

2000 ◽  
Vol 33 (18) ◽  
pp. 55-60
Author(s):  
H.W. Penzhorn ◽  
J. Viljoen ◽  
J.J. Grant

Author(s):  
R. G. Adams ◽  
F. H. Boenig

The Gas Turbine HTGR, or “Direct Cycle” High-Temperature Gas-Cooled, Reactor power plant, uses a closed-cycle gas turbine directly in the primary coolant circuit of a helium-cooled high-temperature nuclear reactor. Previous papers have described configuration studies leading to the selection of reactor and power conversion loop layout, and the considerations affecting the design of the components of the power conversion loop. This paper discusses briefly the effects of the helium working fluid and the reactor cooling loop environment on the design requirements of the direct-cycle turbomachinery and describes the mechanical arrangement of a typical turbomachine for this application. The aerodynamic design is outlined, and the mechanical design is described in some detail, with particular emphasis on the bearings and seals for the turbomachine.


Author(s):  
Yaping Li ◽  
Guangdong Song

The main characteristics of the sodium pipe system in Demonstration Fast Reactor Power Plant (DFRPP) are high-temperature, thin-wall and big-caliber, which is different from high-pressure and thick-wall of the pressurized water reactor system, and the system is long-term operate in the environment of liquid metal sodium. How to guarantee the reliability of materials in high temperature are most important in material option. Engineering design depend on the criterion. Material standards are different in different countries, and corresponding construction codes are different too. Comparing the stainless steel pipe material standers at home and abroad and analyzing the material standards’ difference according to different construction codes, a stainless steel pipe material criterion system is put forward in this paper which is applicable for the DFRPP.


Sign in / Sign up

Export Citation Format

Share Document