Formation of Taylor Vortex Flow of Polymer Solutions

2005 ◽  
Vol 128 (1) ◽  
pp. 95-100 ◽  
Author(s):  
Keizo Watanabe ◽  
Shu Sumio ◽  
Satoshi Ogata

Laser-induced fluorescence (LIF) was applied for the flow visualization of the formation of a Taylor vortex, which occurred in the gap between two coaxial cylinders. The test fluids were tap water and glycerin 60 %wt solution as Newtonian fluids; polyacrilamide (SeparanAP-30) solutions in the concentration range of 10 to 1000ppm and polyethylene-oxide (PEO15) solutions in the range of 20 to 1000ppm were tested as non-Newtonian fluids. The Reynolds number range in the experiment was 80<Re<4.0×103. The rotating inner cylinder was accelerated under the slow condition (dRe*∕dt⩽1min−1) in order to obtain a Taylor vortex flow in stable primary mode. Flow visualization results showed that the Görtler vortices of half the number of the Taylor cells occurred in the gap when the Taylor vortex flow was formed in the primary mode. In addition, the critical Reynolds number of the polymer solutions increased, where Taylor vortices occur, because the generation of the Görtler vortices was retarded. In high concentration polymer solutions, this effect became remarkable. Measurements of steady-state Taylor cells showed that the upper and lower cells of polymer solutions became larger in wavelength than those of the Newtonian fluids. The Taylor vortex flow of non-Newtonian fluids was analyzed and the result obtained using the Giesekus model agreed with the experimental result.

2004 ◽  
Author(s):  
Shu Sumio ◽  
Keizo Watanabe ◽  
Satoshi Ogata

The laser-induced fluorescence (LIF) technique carried out the flow visualization for the formation of Taylor vortex, which occurred in the gap between the two coaxial cylinders. The test fluids were tap water and glycerin 60wt% solution as Newtonian fluids. Polyacrilamide (SeparanAP-30) solutions in the concentration range of 10 ppm to 1000 ppm and polyethylene-oxide (PEO15) solutions in the range of 20 ppm to 1000 ppm were tested as non-Newtonian fluids, respectively. The Reynolds number range was 80 &lt; Re &lt; 4.0 × 103 in the experiment. The rotating inner cylinder was accelerated under the slow condition (dRe*/ dt ≤ 1 min−1) in order to obtain a Taylor vortex flow of the stable primary mode. Flow visualization results showed that the Go¨rtler vortices of half the number of Taylor cells occurred in the gap when Taylor vortex flow of the primary mode was formed. In addition, the critical Reynolds number of the polymer solutions case, which Taylor vortices occur, because the generation of the Go¨rtler vortices was retarded. At the higher concentration of the polymer solutions, this effect became remarkable. Measurements of steady-state Taylor cells showed that the upper and the lower cells of polymer solutions became larger in wavelength than that of the Newtonian fluids. The Taylor vortex flow of non-Newtonian fluids was analyzed and the result of the Giesekus model agreed with the experimental result.


2006 ◽  
Vol 2006.2 (0) ◽  
pp. 421-422
Author(s):  
Miho KATO ◽  
Hiroyuki FURUKAWA ◽  
Yorinobu TOYA ◽  
Takasi WATANABE ◽  
Ikuo NAKAMURA

2004 ◽  
Vol 2004.79 (0) ◽  
pp. _12-17_-_12-18_
Author(s):  
Shu SUMIO ◽  
Keizo WATANABE ◽  
Satoshi OGATA

1979 ◽  
Vol 21 (2) ◽  
pp. 59-64 ◽  
Author(s):  
D. A. Simmers ◽  
J. E. R. Coney

Results are presented of an investigation into a developing, combined axial and rotational flow in an annular gap formed by a stationary outer cylinder and a rotatable inner cylinder for an annulus radius ratio of 0–8 and an axial Reynolds number of 1200. These results show that, in the Taylor vortex flow régime, the development length decreases with the parameter Re2a/Ta and that the greatest development length in an annular gap, for a given axial Reynolds number, occurs when the Taylor number is near to its critical value. Consideration of isothermal heat transfer through the outer wall of the annular gap suggests that, in the development of the flow, the Nusselt number rises to a high value before falling to a constant value, at full development.


Author(s):  
Sang-Hyuk Lee ◽  
Hyoung-Bum Kim

Taylor-Couette flow has been studied extensively and lots of variables which affect the flow instability are being reported. The wall geometry effect of Taylor-Couette flow, however, has been less studied. In this study, we investigated the effect of axial slit of outer cylinder. This kind of configuration can be easily seen in rotating machinery. Particle image velocimetry method was used to measure the velocity fields in longitudinal and latitudinal planes. The index matching method was used to avoid light refraction. The velocity fields between the slit and plain model which has the smooth wall were compared. From the experiments, both models have the same flow mode below Re = 143. The transition from circular Couette flow to plain Taylor vortex flow began at Re = 103, and the next transition to wavy vortex flow occurred at 124. The effect of slit wall appeared when the Reynolds number is larger than Re = 143. Above this Reynolds number, there was no stable mode and plain and wavy Taylor vortex flow randomly appeared.


2004 ◽  
Vol 24 (Supplement1) ◽  
pp. 327-330
Author(s):  
Shingo KISHIKAWA ◽  
Hiroshige KIKURA ◽  
Hideki KAWAI ◽  
Hiroshi TAKAHASHI ◽  
Masanori ARITOMI

Sign in / Sign up

Export Citation Format

Share Document