J013011 Experimental study of Taylor vortex flow in non-Newtonian fluids

2013 ◽  
Vol 2013 (0) ◽  
pp. _J013011-1-_J013011-5
Author(s):  
Hiroki HORIKOSHI ◽  
Hiroyuki FURUKAWA
2004 ◽  
Author(s):  
Shu Sumio ◽  
Keizo Watanabe ◽  
Satoshi Ogata

The laser-induced fluorescence (LIF) technique carried out the flow visualization for the formation of Taylor vortex, which occurred in the gap between the two coaxial cylinders. The test fluids were tap water and glycerin 60wt% solution as Newtonian fluids. Polyacrilamide (SeparanAP-30) solutions in the concentration range of 10 ppm to 1000 ppm and polyethylene-oxide (PEO15) solutions in the range of 20 ppm to 1000 ppm were tested as non-Newtonian fluids, respectively. The Reynolds number range was 80 < Re < 4.0 × 103 in the experiment. The rotating inner cylinder was accelerated under the slow condition (dRe*/ dt ≤ 1 min−1) in order to obtain a Taylor vortex flow of the stable primary mode. Flow visualization results showed that the Go¨rtler vortices of half the number of Taylor cells occurred in the gap when Taylor vortex flow of the primary mode was formed. In addition, the critical Reynolds number of the polymer solutions case, which Taylor vortices occur, because the generation of the Go¨rtler vortices was retarded. At the higher concentration of the polymer solutions, this effect became remarkable. Measurements of steady-state Taylor cells showed that the upper and the lower cells of polymer solutions became larger in wavelength than that of the Newtonian fluids. The Taylor vortex flow of non-Newtonian fluids was analyzed and the result of the Giesekus model agreed with the experimental result.


2005 ◽  
Vol 128 (1) ◽  
pp. 95-100 ◽  
Author(s):  
Keizo Watanabe ◽  
Shu Sumio ◽  
Satoshi Ogata

Laser-induced fluorescence (LIF) was applied for the flow visualization of the formation of a Taylor vortex, which occurred in the gap between two coaxial cylinders. The test fluids were tap water and glycerin 60 %wt solution as Newtonian fluids; polyacrilamide (SeparanAP-30) solutions in the concentration range of 10 to 1000ppm and polyethylene-oxide (PEO15) solutions in the range of 20 to 1000ppm were tested as non-Newtonian fluids. The Reynolds number range in the experiment was 80<Re<4.0×103. The rotating inner cylinder was accelerated under the slow condition (dRe*∕dt⩽1min−1) in order to obtain a Taylor vortex flow in stable primary mode. Flow visualization results showed that the Görtler vortices of half the number of the Taylor cells occurred in the gap when the Taylor vortex flow was formed in the primary mode. In addition, the critical Reynolds number of the polymer solutions increased, where Taylor vortices occur, because the generation of the Görtler vortices was retarded. In high concentration polymer solutions, this effect became remarkable. Measurements of steady-state Taylor cells showed that the upper and lower cells of polymer solutions became larger in wavelength than those of the Newtonian fluids. The Taylor vortex flow of non-Newtonian fluids was analyzed and the result obtained using the Giesekus model agreed with the experimental result.


1989 ◽  
Vol 55 (517) ◽  
pp. 2581-2589
Author(s):  
Mutsuo KOBAYASHI ◽  
Hiroshi MAEKAWA ◽  
Tsuyoshi TAKANO ◽  
Yukihide YAMADA

1974 ◽  
Vol 96 (1) ◽  
pp. 28-35 ◽  
Author(s):  
R. C. DiPrima ◽  
J. T. Stuart

At sufficiently high operating speeds in lightly loaded journal bearings the basic laminar flow will be unstable. The instability leads to a new steady secondary motion of ring vortices around the cylinders with a regular periodicity in the axial direction and a strength that depends on the azimuthial position (Taylor vortices). Very recently published work on the basic flow and the stability of the basic flow between eccentric circular cylinders with the inner cylinder rotating is summarized so as to provide a unified description. A procedure for calculating the Taylor-vortex flow is developed, a comparison with observed properties of the flow field is made, and formulas for the load and torque are given.


2002 ◽  
Vol 35 (7) ◽  
pp. 692-695 ◽  
Author(s):  
Naoto Ohmura ◽  
Hirokazu Okamoto ◽  
Tsukasa Makino ◽  
Kunio Kataoka

Sign in / Sign up

Export Citation Format

Share Document