Optimal Placement of Piezoelectric Sensors and Actuators for Controlled Flexible Linkage Mechanisms

2005 ◽  
Vol 128 (2) ◽  
pp. 256-260 ◽  
Author(s):  
Xianmin Zhang ◽  
Arthur G. Erdman

The optimal placement of sensors and actuators in active vibration control of flexible linkage mechanisms is studied. First, the vibration control model of the flexible mechanism is introduced. Second, based on the concept of the controllability and the observability of the controlled subsystem and the residual subsystem, the optimal model is developed aiming at the maximization of the controllability and the observability of the controlled modes and minimization of those of the residual modes. Finally, a numerical example is presented, which shows that the proposed method is feasible. Simulation analysis shows that to achieve the same control effect, the control system is easier to realize if the sensors and actuators are located in the optimal positions.

Author(s):  
Xianmin Zhang ◽  
Arthur G. Erdman

The optimal placement of sensors and actuators in the active vibration control of flexible linkage mechanisms is studied. Based on the concept of the controllability and the observability of the controlled subsystem and the residual subsystem, the objective functions are proposed aiming at the maximization of the controllability and the observability of the controlled modes and minimization of those of the residual modes. The optimal model is solved using the modified constrained variable metric method. Numerical example shows the validness of the proposed modeling.


Author(s):  
Moon K. Kwak ◽  
Dong-Ho Yang

This paper is concerned with the active vibration control of a hanged rectangular plate partially submerged into a fluid by using piezoelectric sensors and actuators bonded to the plate. A dynamic model for the plate is derived by using the Rayleigh-Ritz method and the fluid effect is modeled by the virtual mass increase that is obtained by solving the Laplace equation. The natural vibration characteristics of the plate in air obtained theoretically are in good agreement with the experimental results. The changes in natural frequencies due to the presence of fluid were measured and compared to the theoretical predictions. Experimental results show that the theoretical predictions are in good agreement with the experimental results. The natural vibration characteristics of the plate both in air and in water are used for the active vibration control design. In this study, the multi-input and multi-output positive position feedback controller was designed based on the natural vibration characteristics and implemented by using a digital controller. Experimental results show that the vibration of the hanged rectangular plate both in air and partially submerged into a fluid can be successfully suppressed by using piezoelectric sensors and actuators.


Sign in / Sign up

Export Citation Format

Share Document