An Analytical Approach to the Heat and Mass Transfer Processes in Counterflow Cooling Towers

2006 ◽  
Vol 128 (11) ◽  
pp. 1142-1148 ◽  
Author(s):  
Chengqin Ren

Quick and accurate analysis of cooling tower performance, outlet conditions of moist air, and parameter profiles along the tower height is very important in rating and design calculations. This paper developed an analytical model for the coupled heat and mass transfer processes in counterflow cooling towers based on operating conditions more realistic than most conventionally adopted Merkel approximations. In modeling, values of the Lewis factor were not necessarily specified as unity. Effects of water loss by evaporation and water film heat transfer resistance were also considered in the model equations. Within a relatively narrow range of operating conditions, the humidity ratio of air in equilibrium with the water surface was assumed to be a linear function of the surface temperature. The differential equations were rearranged and an analytical solution was developed for newly defined parameters. The analytical model predicts the tower performances, outlet conditions, and parameter profiles quickly and accurately when comparing with the numerical integration of the original differential equations.

Author(s):  
Mostafa H. Sharqawy ◽  
Iqbal S. Husain ◽  
Syed M. Zubair ◽  
John H. Lienhard

Seawater has been used for long time as a cooling fluid in heat exchangers to reduce fresh water usage in industry and power plants. The thermophysical properties of seawater are different from those of fresh water due to the salt content or salinity. This difference is sufficient to affect the heat and mass transfer processes which in turn change the thermal performance. Thermal design of fresh water cooling towers is described in detail in many textbooks and handbooks. However, only a rule of thumb is frequently used for designing of seawater cooling towers. This rule recommends degrading the tower performance by approximately 1% for every 10,000 ppm of salts in the feed water. In this paper, the thermal performance of seawater cooling towers is presented using a detailed model of counterflow wet cooling towers which takes into consideration the coupled simultaneous heat and mass transfer processes and uses state-of-the-art seawater properties from the literature. The model governing equations are solved numerically and the validity of this model is checked using new experimental data that has been measured using a bench top counterflow seawater cooling tower. The effect of the variation of seawater salinity as well as other operating conditions on the effectiveness and Merkel number is investigated.


Author(s):  
Dmitriy V. Guzei ◽  
Andrey V. Minakov ◽  
Vasiliy I. Panteleev ◽  
Maksim I. Pryazhnikov ◽  
Dmitriy V. Platonov ◽  
...  

The mathematical model of heat and mass transfer processes in the combustion chamber of diesel generator units with valve inductor generators has been developed. The mathematical model takes into account the actual geometry of the combustion chamber and the operating conditions of the diesel engine. A study of the main characteristics of a diesel generator in a wide range of modes of operation has been carried out. In addition to energy characteristics, environmental parameters have been considered


Sign in / Sign up

Export Citation Format

Share Document