actual geometry
Recently Published Documents


TOTAL DOCUMENTS

104
(FIVE YEARS 31)

H-INDEX

10
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Jin-Soo Cho ◽  
Dong-Hee Lee ◽  
Gi-Jeong Seo ◽  
Duck-Bong Kim ◽  
Seung-Jun Shin

Abstract Wire + arc additive manufacturing (WAAM) is an arc welding process that uses non-consumable tungsten electrodes to produce the weld. The material used in this study is a titanium, carbon, zirconium, and molybdenum (TZM) alloy that is physically and chemically stable and has good performance for use as a welding and high-temperature heating element. However, the price is higher than that of other materials. Because welding cannot be modified after manufacturing, economic losses are high in the case of a defective product. Therefore, it is important to find the best welding settings for the target bead geometry during welding. In this study, welding experiments are designed based on a central composite design, and single-layer WAAM is performed using a TZM material. Consequently, we obtain 17 beads and measure the height, width, as well as left and right toe angles, which represent the geometry of the beads. Based on the measured geometry, we obtain the optimal settings for the WAAM parameters whereat the mean of each geometry is close to its target value and its variance is minimized by using a desirability function method. Furthermore, we conduct additional experiments to validate the optimal settings that we obtain. We compare the predicted and actual geometry values and find that they are quite close. This result indicates that valid optimal settings for the process parameters can be obtained via the proposed method.


Author(s):  
Gianmarco de Felice ◽  
Rebecca Fugger ◽  
Francesca Gobbin

AbstractThe out-of-plane collapse of the façade represents one of the major threats and the most frequent cause of damages of churches due to strong earthquakes. Due to the slenderness of the façade and the lack of adequate connections to the side walls and the wooden roof, the seismic action can trigger the overturning. A detailed assessment is therefore required to judge whether or not to intervene. This paper presents an approach for the seismic assessment of the stability of the façade, through a discrete element model based on a photographic survey, with the aim of representing the actual geometry and arrangement of the stone units and their effects on the kinematics of the overturning. The collapse mechanism is simulated with both, quasi-static pushover and dynamic pulse-based analyses and the results compared to those of conventional rigid-body kinematics. The proposed approach is then applied to seven masonry churches that suffered severe damages during the 2009 L’Aquila (Italy) earthquake and the failure mode provided by the analyses is compared to the damages caused by the earthquake. The method is able to give a reliable estimate of the expected failure mechanism, taking into account the quality of the masonry and the connections to the side walls, while also providing the seismic acceleration required to trigger the motion and the ultimate displacement beyond which collapse occurs.


2021 ◽  
Vol 11 (19) ◽  
pp. 9228
Author(s):  
Chungang Liu ◽  
Huanjun Bi ◽  
Dong Wang ◽  
Xiaoning Li

This study investigates the effectiveness of vegetation reinforcement on the stability of a slope with red-bed soft rock in a slope along the Xining-Chengdu railway, China. Four kinds of vegetation were considered to reinforce the soil and the slope. The rooted soil parameters were determined based on the laboratory tests. A numerical model was developed based on the actual geometry and soil layer distributions. The soils were modeled as elastic perfectly plastic materials and the vegetation reinforcement was represented as addition cohesion of a series of subsoil layers within a given depth. The effectiveness of vegetation on slope reinforcement under both dry and rainfall conditions was investigated regarding this case. The potential failure surface and corresponding factor of safety of the red-bed soft rock slope for those different conditions were analyzed and compared. It has been found that the addition of vegetation increased the safety of slope stability whether the slope is under a dry condition or a rainfall condition, while the increasing proportion of factor of safety due to vegetation reinforcement for this case is very limited. The results and findings in this study are still significant for the practitioner to evaluate the reasonability of vegetation reinforcement.


2021 ◽  
Vol 11 (16) ◽  
pp. 7611
Author(s):  
Martin Stein ◽  
Frank Keller ◽  
Anita Przyklenk

We propose a unified theory for the metrological treatment of helical machine elements such as cylindrical and conical gears, worms, and screw threads. The main idea is to introduce a universal 3D geometry model for threaded components that provides for distinct parameterization using a unique set of geometry parameters and that offers and a functional description of the transverse profile. Using modern 3D coordinate measuring technology, a holistic evaluation algorithm yields the actual geometry as the result of a high dimensional best-fit procedure and form deviations as corresponding residuals. All determinants and evaluation parameters can then be calculated from the set of actual geometry parameters. By applying certain constraints to the model to be fitted, the novel method can be reduced to the established 2D methods and hence meets demands for the comparison of the two procedures. The results of the novel approach have proven to be very stable and they enable the evaluation of areal measurements with no loss of information.


2021 ◽  
Vol 263 (4) ◽  
pp. 2336-2347
Author(s):  
Federico Di Marco

NVH engineers are faced with the challenge of designing trim parts for vehicle interior and exterior, like inner dash insulators, carpets, underbody shields or engine encapsulations, which can be made with very different Bills of Materials (BOMs) including among others foams, felts or heavier layers. The measurables commonly used to rank various solutions are Transmission Loss (TL) and absorption. Depending on the numerical analysis method, different approaches may be considered for the evaluation of the TL of an automotive component. In particular, in Statistical Energy Analysis (SEA), automotive components are modeled as an assembly of panels having a simple shape, e.g. flat panels and/or panels with single or double curvature. Furthermore, in SEA the trim is normally modeled by means of the Transfer Matrix Method (TMM), which is essentially a 2-dimensional methodology. This paper intends to analyze in some depth the level of approximation that these practices bring with themselves, specifically in relation to the modelling of an automotive floor. More in detail, the aim of the paper is first to investigate what impact has the presence of the tunnel on the TL of a vehicle floor in bare and trimmed conditions and then to evaluate if the presence of the tunnel can be better modeled by using a semi-cylinder or three flat plates welded together in a trapezoidal shape, both shapes considered as a reasonable simplification of the actual geometry of a typical tunnel. The analysis is carried out at simulation level using FE. To investigate both air bone noise and structure borne noise transmission, two types of excitations are used: a diffuse acoustic pressure field applied to the entire floor surface and an imposed displacement applied to the edge of the floor surface. Furthermore, 3 different kind of trims are taken into consideration in order to analyze if and how the tunnel modeling strategy may influence the evaluation of the trim effectiveness.


2021 ◽  
Author(s):  
Christian Schäffer ◽  
Konstantin Speck ◽  
Volker Gümmer

Abstract This paper presents an investigation into the numerical and experimental calibration of a five-hole probe and effects of Reynolds number variations on the characteristics of the probe. The test object is a cone-type drilled elbow probe with a head diameter of 1.59 mm and a cone angle of 60°. The experimental calibration maps of four different probes of the same type and nominal geometry are compared. A significant variation of the curves can be observed especially at high yaw angles. This led to a visual inspection of the probes with a 3D measurement system. The actual geometry of the three used probes and the surface and radii in particular varied significantly from that of the unused spare probe. Furthermore, a numerical calibration map of the ideal probe was generated for a Mach number of Ma = 0.3. A comparison between the experimental and numerical calibration coefficients revealed that total pressure, yaw and pitch angle were reproduced reasonably well. The dynamic pressure coefficient, however, has a considerable offset. Finally, a parameter study of the effect of varying the Reynolds number over different yaw angles was conducted. The calibration Reynolds number is of the order of Re = 1 · 104 and was varied between 0.5 · 104 < Re < 6 · 104. While the results suggest that only minor measurement errors occur for yaw angle, total pressure and static pressure, a relatively large error was observed for pitch angle measurements.


2021 ◽  
Author(s):  
Gianmarco de Felice ◽  
Rebecca Fugger ◽  
Francesca Gobbin

Abstract The out-of-plane collapse of the façade represents one of the major threats and the most frequent cause of damages of churches due to strong earthquakes. Due to the slenderness of the façade and the lack of adequate connections to the side walls and the wooden roof, the seismic action can trigger the overturning. A detailed assessment is therefore required to judge whether or not to intervene. This paper presents an approach for the seismic assessment of the stability of the façade, through a discrete element model based on a photographic survey, with the aim of representing the actual geometry and arrangement of the stone units and their effects on the kinematics of the overturning. The collapse mechanism is simulated with both, quasi-static pushover and dynamic pulse-based analyses and the results compared to those of conventional rigid-body kinematics. The proposed approach is then applied to seven masonry churches that suffered severe damages during the 2009 L’Aquila (Italy) earthquake and the failure mode provided by the analyses is compared to the damages caused by the earthquake. The method is able to give a reliable estimate of the expected failure mechanism, taking into account the quality of the masonry and the connections to the side walls, while also providing the seismic acceleration required to trigger the motion and the ultimate displacement beyond which collapse occurs.


ACTA IMEKO ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 257
Author(s):  
Maria Grazia D'Urso ◽  
Valerio Manzari ◽  
Barbara Marana

Terrestrial laser-scanning (TLS) is well suited to surveying the geometry of monumental complexes, often realised with highly irregular materials and forms. This paper addresses various issues related to the acquisition of point clouds via TLS and their elaboration aimed at developing structural models of masonry vaults. This structural system, which exists in numerous artifacts and historical buildings, has the advantages of good static and functional behaviour, reduced weight, good requisites of insulation, and aesthetic quality. Specifically, using TLS, we create a geometric model of the ancient masonry church, S. Maria della Libera, in Aquino, largely characterised by naves featuring cross vaults and previously used as a case study in the paper entitled ‘Terrestrial laser-scanning point-clouds for modeling masonry vaults’, presented at the 2019 IMEKO TC-4 International Conference on Metrology for Archaeology and Cultural Heritage. The results of the TLS survey are used as input for a structural analysis based on the thrust network analysis. This recent methodology is used for modelling masonry vaults as a discrete network of forces in equilibrium with gravitational loads. It is demonstrated that the proposed approach is both effective and robust in terms of assessing not only the safety conditions of existing masonry vaults, the actual geometry of which significantly influences the safety level, but also to design new ones.


Energies ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1504
Author(s):  
Il Suk Lee ◽  
Dong Hyeog Yoon ◽  
Young Seok Bang ◽  
Tae Hoon Kim ◽  
Yong Chan Kim

Concern over the asymmetric phenomena in the core region has increased considering safety issues that are highly possible to reduce the thermal margin significantly in nuclear power plants. Since the seized reactor coolant pump (RCP) accident of an advanced power reactor 1400 (APR1400) can be regarded as a representative core asymmetric event with respect to core inlet flow, the departure from nucleate boiling ratio (DNBR), which is a regulatory acceptance criterion in nuclear safety, should be evaluated with consideration of the uncertainty range of the core inlet flow reflecting the actual geometry. This study investigates the DNBR quantitatively in the entire fuel assemblies in the core using several codes for system behavior, computational flow dynamics, sub-channel analysis, and uncertainty evaluation. Based on the results from a system thermal-hydraulic analysis of a seized RCP accident of APR1400, this study presents the uncertainty range calculated by computational fluid dynamics on the asymmetry of the core inlet flow. Damaged fuel rods are quantitatively identified through a sub-channel analysis, which presents statistic relevance to obtain the DNBR at 95% reliability and 95% accuracy level. Additionally, an optimized evaluation methodology of a non-loss of coolant accident (non-LOCA) is realized by several nuclear codes.


2021 ◽  
Vol 13 (4) ◽  
pp. 2161
Author(s):  
Juan E. Nieto-Julián ◽  
Lenin Lara ◽  
Juan Moyano

The benefits of Building Information Modelling (BIM) accrue from the needs of the interoperability of applied technologies. This scope is strongly related to heritage buildings. Protection plans encompassing phases of heritage conservation, interpretation, intervention and dissemination could lead to a sustainable model through a TeamWork-HBIM project. This work develops a step by step semantically enriched 3D model, from accurate data acquisition to the creation of a container of artistic assets. TeamWork-HBIM acts as a database for movable assets, i.e., parametric objects (GDL) with graphical and semantic information, which are valid for recording, inventory and cataloguing processes. Thus, heritage properties were created and used to create recording and inventory sheets related to movable assets. Consequently, a parametric object was edited in the HBIM project, so a new category called “Heritage Furniture” was available. Data from the monitoring of the artistic asset were included in that category. In addition, the specialist technicians from the TeamWork-HBIM team catalogued a dataset related to artistic, historical and conservation properties. Another advantage of the system was the reliability of the structure of the HBIM project, which was based on the actual geometry of the building provided by the point clouds. The information was valid for both modelling works and specialists in virtual monitoring. Moreover, the reliability of metadata was collected in a common data environment (CDE), which was available for everyone. As a result, the Teamwork-HBIM-CDE project meets the needs of private institutions, such as the Foundation of the Church of the Company of Jesus in Quito, related to the sustainability of the historic site. This sustainability is shown by the implementation of a methodology that strengthens the interdisciplinary information flow by including all disciplines of historical heritage.


Sign in / Sign up

Export Citation Format

Share Document