Least-Squares Radial Point Interpolation Collocation Meshless Method for Radiative Heat Transfer

2006 ◽  
Vol 129 (5) ◽  
pp. 669-673 ◽  
Author(s):  
J. Y. Tan ◽  
L. H. Liu ◽  
B. X. Li

A least-squares radial point interpolation collocation meshless method based on the discrete ordinates equation is developed for solving the radiative transfer in absorbing, emitting, and scattering media, in which compact support radial basis functions augmented with polynomial basis are employed to construct the trial functions. In addition to the collocation nodes, a number of auxiliary points are also adopted to form the total residuals of the problem. The least-squares technique is used to obtain the solution of the problem by minimizing the summation of residuals of all collocation and auxiliary points. Three typical examples of radiative transfer in semitransparent media are examined to verify this new solution method. The numerical results are compared with other benchmark approximate solutions in references. By comparison, the results show that the least-squares radial point interpolation collocation meshless method has good accuracy in solving radiative transfer problems within absorbing, emitting, and scattering media.

2005 ◽  
Vol 128 (5) ◽  
pp. 499-503 ◽  
Author(s):  
W. An ◽  
L. M. Ruan ◽  
H. P. Tan ◽  
H. Qi

In some radiative transfer processes, the time scales are usually on the order of 10−9-10−15s, so the transient effect of radiation should be considered. In present research, a finite element model, which is based on the discrete ordinates method and least-squares variational principle, is developed to simulate the transient radiative transfer in absorbing and scattering media. The numerical formulations and detailed steps are given. Moreover, two transient radiative transfer problems are investigated and the results are compared with those by integral method and finite volume method. It indicates that the present model can simulate the transient radiative transfer effectively and accurately.


Author(s):  
ROSS Costa ◽  
J Belinha ◽  
RM Natal Jorge ◽  
DES Rodrigues

Additive manufacturing is an emergent technology, which witnessed a large growth demanded by the consumer market. Despite this growth, the technology needs scientific regulation and guidelines to be reliable and consistent to the point that is feasible to be used as a source of manufactured end-products. One of the processes that has seen the most significant development is the fused deposition modeling, more commonly known as 3D printing. The motivation to better understand this process makes the study of extrusion of materials important. In this work, the radial point interpolation method, a meshless method, is applied to the study of extrusion of viscoplastic materials, using the formulation originally intended for the finite element method, the flow formulation. This formulation is based on the reasoning that solid materials under those conditions behave like non-Newtonian fluids. The time stepped analysis follows the Lagrangian approach taking advantage of the easy remeshing inherent to meshless methods. To validate the newly developed numerical tool, tests are conducted with numerical examples obtained from the literature for the extrusion of aluminum, which is a more common problem. Thus, after the performed validation, the algorithm can easily be adapted to simulate the extrusion of polymers in fused deposition modeling processes.


2000 ◽  
Author(s):  
M. Sakami ◽  
K. Mitra ◽  
P.-F. Hsu

Abstract This research work deals with the analysis of transient radiative transfer in one-dimensional scattering medium. The time-dependant discrete ordinates method was used with an upwind monotonic scheme: the piecewise parabolic scheme. This scheme was chosen over a total variation diminishing version of the Lax-Wendroff scheme. These schemes were originally developed to solve Eulerian advection problem in hydrodynamics. The capability of these schemes to handle sharp discontinuity in a propagating electromagnetic wave front was compared. The accuracy and the efficiency of the discrete ordinates method associated with the piecewise parabolic advection scheme were studied. Comparisons with Monte Carlo and integral formulation methods show the accuracy and the efficiency of this proposed method. Parametric study for optically thin and thick medium, different albedos and phase functions is then made in the unsteady state zone.


Sign in / Sign up

Export Citation Format

Share Document