Numerical Investigation of End Wall Boundary Layer Removal on Highly Loaded Axial Compressor Blade Rows

2008 ◽  
Vol 130 (1) ◽  
Author(s):  
V. Gümmer ◽  
M. Goller ◽  
M. Swoboda

This paper presents results of numerical investigations carried out to explore the benefit of end wall boundary layer removal from critical regions of highly loaded axial compressor blade rows. At the loading level of modern aero engine compressors, the performance is primarily determined by three-dimensional (3D) flow phenomena occurring in the end wall regions. Three-dimensional Navier–Stokes simulations were conducted on both a rotor and a stator test case in order to evaluate the basic effects and the practical value of bleeding air from specific locations at the casing end wall. The results of the numerical survey demonstrated substantial benefits of relatively small bleed rates to the local flow field and to the performance of the two blade rows. On the rotor, the boundary layer fluid was removed from the main flow path through an axisymmetric slot in the casing over the rotor tip. This proved to give some control over the tip leakage vortex flow and the associated loss generation. On the stator, the boundary layer fluid was taken from the flow path through a single bleed hole within the passage. Two alternative off-take configurations were evaluated, revealing a large impact of the bleed hole shape and the location on the cross-passage flow and the suction side corner separation. On both blade rows investigated, rotor and stator, the boundary layer removal resulted in a reduction of the local reverse flow, blockage, and losses in the respective near-casing region. This paper gives insight into changes occurring in the 3D passage flow field near the casing and summarizes the effects on the radial matching and pitchwise-averaged performance parameters, namely loss and deviation of the rotor and stator when suction is active. Primary focus is put on the aerodynamics in the blade rows in the main flow path; details of the internal flow structure within the bleed off-take cavities/ports are not discussed here.

Author(s):  
V. Gu¨mmer ◽  
M. Goller ◽  
M. Swoboda

This paper presents results of numerical investigations carried out to explore the benefit of endwall boundary layer removal from critical regions of highly-loaded axial compressor blade rows. At the loading level of modern aero-engine compressors the performance is primarily determined by three-dimensional flow phenomena occuring in the endwall regions. 3DNS simulations were conducted on both a rotor and a stator test case in order to evaluate basic effects and the practical value of bleeding air from specific locations at the casing endwall. The results of the numerical survey demonstrated substantial benefits of relatively small bleed rates to the local flow field and to the performance of the two blade rows. On the rotor, boundary layer fluid was removed from the main flow path through an axisymmetric slot in the casing over the rotor tip. This proved to give some control over the tip leakage vortex flow and the associated loss generation. On the stator, boundary layer fluid was taken from the flow path through a single bleed hole within the passage. Two alternative off-take configurations were evaluated, revealing a large impact of the bleed hole shape and location on the cross-passage flow and the suction side corner separation. On both blade rows investigated, rotor and stator, boundary layer removal resulted in a reduction of local reverse flow, blockage and losses in the respective near-casing region. This paper gives insight into changes occuring in the 3D passage flow field near the casing and summarises the effects on the radial matching and pitchwise-averaged performance parameters, namely loss and deviation of the rotor and stator when suction is active. Primary focus is put on the aerodynamics in the blade rows in the main flow path; details of the internal flow structure within the bleed off-take cavities/ports are not discussed here.


1979 ◽  
Vol 101 (2) ◽  
pp. 233-245 ◽  
Author(s):  
J. De Ruyck ◽  
C. Hirsch ◽  
P. Kool

An axial compressor end-wall boundary layer theory which requires the introduction of three-dimensional velocity profile models is described. The method is based on pitch-averaged boundary layer equations and contains blade force-defect terms for which a new expression in function of transverse momentum thickness is introduced. In presence of tip clearance a component of the defect force proportional to the clearance over blade height ratio is also introduced. In this way two constants enter the model. It is also shown that all three-dimensional velocity profile models present inherent limitations with regard to the range of boundary layer momentum thicknesses they are able to represent. Therefore a new heuristic velocity profile model is introduced, giving higher flexibility. The end-wall boundary layer calculation allows a correction of the efficiency due to end-wall losses as well as calculation of blockage. The two constants entering the model are calibrated and compared with experimental data allowing a good prediction of overall efficiency including clearance effects and aspect ratio. Besides, the method allows a prediction of radial distribution of velocities and flow angles including the end-wall region and examples are shown compared to experimental data.


Author(s):  
J Dunham

Although three-dimensional Navier-Stokes computations are coming into use more and more, streamline curvature through-flow computations are still needed, especially for multistage compressors, and where codes which run in minutes rather than hours are preferred. These methods have been made more realistic by taking account of end-wall effects and spanwise mixing by four aerodynamic mechanisms: turbulent diffusion, turbulent convection by secondary flow, spanwise migration of aerofoil boundary layer fluid and spanwise convection of fluid in blade wakes. This paper describes the models adopted in the DRA streamline curvature method for axial compressor design and analysis. Previous papers are summarized briefly before describing the new part of the model—that accounting for aerofoil boundary layers and wakes. Other changes to the previously published annulus wall boundary layer model have been made to enable it to cater for separations and end bends. The resulting code is evaluated against a range of experimental and computational results.


1981 ◽  
Vol 103 (1) ◽  
pp. 20-33 ◽  
Author(s):  
J. De Ruyck ◽  
C. Hirsch

A previously developed axial compressor end-wall boundary layer calculation method which requires the introduction of three-dimensional velocity profile models is summarized. In this method the classical three-dimensional velocity profile models were shown to present inherent limitations at stall limit, with regard to the range of transverse boundary layer thicknesses they are able to represent. A corrected profile model is presented which contains no more limitations without affecting the previous found overall results. Stall limit is predicted by limiting values of shape factor and/or diffusion factor. The new profile model containing also compressibility effects allows the calculation of boundary layers in machines with shrouded blades, by simulating the jump between rotating and non rotating parts of the walls. A corrected version of a force defect correlation is presented which is shown to give better agreement at high incidences. Some results on high and low speed machines are discussed. The model is applied to obtain an end-wall blockage correlation depending on geometry, flow coefficient, AVR, aspect ratio, solidity, diffusion factor, Reynolds number, axial blade spacing, tip clearance and inlet boundary layer thickness. A quantitative estimation of the losses associated with the end-wall boundary layers can be obtained using this analysis and therefore can be a useful tool in the design of an axial compressor stage.


1984 ◽  
Vol 106 (2) ◽  
pp. 337-345
Author(s):  
B. Lakshminarayana ◽  
N. Sitaram

The annulus wall boundary layer inside the blade passage of the inlet guide vane (IGV) passage of a low-speed axial compressor stage was measured with a miniature five-hole probe. The three-dimensional velocity and pressure fields were measured at various axial and tangential locations. Limiting streamline angles and static pressures were also measured on the casing of the IGV passage. Strong secondary vorticity was developed. The data were analyzed and correlated with the existing velocity profile correlations. The end wall losses were also derived from these data.


Sign in / Sign up

Export Citation Format

Share Document