multistage axial compressor
Recently Published Documents


TOTAL DOCUMENTS

67
(FIVE YEARS 20)

H-INDEX

6
(FIVE YEARS 1)

2021 ◽  
Vol 9 ◽  
Author(s):  
Qi Wang ◽  
Zhou Zhang ◽  
Qingsong Hong ◽  
Lanxue Ren

In this paper, a numerical model based on the mass flow rate of seal leakage is presented, and a 3D numerical method of a multistage axial compressor with good engineering practicability is established. Validation consists of modeling a nine-stage axial compressor in all operating rotation speeds and calculating results of the performance characteristic curves in good agreement with test data. Comparisons are made against different cases of seal leakage mass flow rate for analyzing the impact of increasing seal leakage on the aerodynamic performance of the multistage axial compressor. The results indicate that the performance of the nine-stage axial compressor is degenerated faster and faster with seal leakage increasing in all operating working points, and the degeneration of performance of this compressor can be evaluated by the relationships of main performance parameters with the mass flow rate of seal leakage. Comparisons of flow distribution in the compressor for different cases of seal leakage also show that stators located in front stages of the multistage axial compressor are affected more seriously by the increasing seal leakage, and it can be confirmed that relatively larger flow losses in front stages bring significant impact on the decay of aerodynamic performance of a multistage axial compressor.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Baofeng Tu ◽  
Xinyu Zhang ◽  
Jun Hu ◽  
Ming Zhong ◽  
Bing Xiong

In order to detect the aerodynamic instability of a multistage axial compressor more accurately and earlier, the harmonic Fourier mean amplitude analysis method and heterotopic variance analysis method are developed. The dynamic instability prediction performance of the two methods is studied on a low-speed and a high-speed two-stage axial compressor. The harmonic Fourier mean amplitude analysis method is suitable for predicting the aerodynamic instability of a multistage axial compressor in the form of a rotating stall. Compared with the traditional harmonic Fourier analysis methods, the harmonic Fourier mean amplitude analysis method can capture the detail of the pressure signal more accurately and it can effectively prevent instability misjudgment. The heterotopic variance analysis method is developed based on the conventional variance analysis method, and it can be used to distinguish whether the compressor is in the rotating stall or the surge state. The heterotopic variance analysis method can predict the aerodynamic instability ahead of the harmonic Fourier mean amplitude analysis method, and fewer circumferential measuring points were employed. The layout of the measuring points also influences the detection of the aerodynamic instability of the compressor. The aerodynamic instability of the high-speed axial compressor can be predicted earlier by employing measuring points at the compressor outlet.


Author(s):  
Jinguang Yang ◽  
Min Zhang ◽  
Cheng Peng ◽  
Michele Ferlauto ◽  
Yan Liu

2021 ◽  
Vol 2021 ◽  
pp. 1-24
Author(s):  
Jinxin Cheng ◽  
Zhaohui Dong ◽  
Shengfeng Zhao ◽  
Hang Xiang

Multistage axial compressor is the key component of aeroengine and gas turbine to realize energy conversion. In order to avoid the “curse of dimensionality” problem in the global optimization process of AL-31F four-stage low-pressure compressor under multiple working conditions, an optimization method based on phased parameterization strategy is proposed. The method uses the idea of “exploration before exploitation” for reference and divides the optimization process into two phases. In the first phase, the traditional parametric modification method based on stacking line is adopted; in the second phase, the full-blade surface parametric modification method with significant low-dimensional characteristics is adopted. Based on the improved artificial bee colony algorithm, a multitask concurrent optimization system is built on the supercomputing platform, and the engineering optimization solution is obtained within 91 hours. The optimization results are as follows: under the condition of meeting the constraints, the adiabatic efficiency is increased by 0.3% and the surge margin is 4.0% at the design speed; the adiabatic efficiency is increased by 0.8% and the surge margin is 2.3% at the off-design speed. These results verify the usefulness and reliability of the optimization method in the field of aerodynamic optimization of a multistage axial flow compressor.


2021 ◽  
pp. 1-10
Author(s):  
Ilaria De Dominicis ◽  
Sebastian Robens ◽  
Nina Wolfrum ◽  
Martin Lange ◽  
Volker Gümmer

Author(s):  
Alessio Suman ◽  
Alessandro Vulpio ◽  
Nicola Casari ◽  
Michele Pinelli ◽  
Rainer Kurz ◽  
...  

Abstract Compressor fouling is one of the main causes of gas turbine performance degradation. Microsized particles adhere to the blade surfaces increasing the surface roughness and modifying the airfoil shape. In the present work, the contamination of the Allison 250 C18 multistage compressor engine with four sorts of micrometric dust has been provided. The tests were performed changing the relative humidity at the compressor inlet and the unit rotational speed. After each test, a photographic inspection of the internal fouled parts has been realized and the digital pictures have been analyzed employing an image processing package. The deposits build-up of stator vanes and rotor blades have been postprocessed and the most affected regions of each compressor stage have been highlighted. Besides, a numerical simulation of the machine has been performed. The numerical flow field has been used to highlight the blade regions which show the most favorable conditions for particle deposition. A theoretical model has been applied to the flow field to simulate the particle deposition. The combination of the deposition model with the results of the CFD simulations gives the chance to better understand the experimentally-founded deposition patterns. Those results have been finally compared to the pictures of the patterns. The possibility to detect and measure the deposition patterns on a rotating test rig and the comparison with models and experiments gave the possibility to assess in detail the particle deposition phenomenon on a multistage axial compressor flow path.


2021 ◽  
Vol 312 ◽  
pp. 11016
Author(s):  
Nicola Aldi ◽  
Nicola Casari ◽  
Ettore Fadiga ◽  
Riccardo Friso ◽  
Stefano Oliani ◽  
...  

The interaction between gas turbines and airborne particles determines detrimental effects on the performance, efficiency, and reliability of the power unit. When it is possible, the interaction is reduced by the use of inlet separators and filtration systems. In an aero engine, these barriers are difficult to implement, and only bigger particles (usually greater than 10 μm) are separated from the airflow. Small units, especially those equips helicopters, are usually affected by fouling issues, especially when the aircraft is employed in harsh environments such as firefighting and rescue activities. To recover this contamination, the unit is washed after the mission by ground operations to restore the unit performance by removing the deposits. This operation occurs during a sub-idle unit operation, and the washing process has to be effective when the engine operates in this off-design condition. In this paper, the evaluation of the washing performance during a sub-idle unit operation is carried out. The compressor unit is a multistage axial compressor that equips the Allison 250-C18 engine. The washing operation was performed by water, and a sensitivity analysis is carried out to discover the capability of water droplets to remove the contaminants. The experimental analysis involves the contamination of the unit by micro-sized soot particles and a washing operation by micro-sized water droplets. These experimental results are compared to numerical simulations to discover the effects of the washing operation on a small power unit during sub-idle operating conditions. The off-design regime imposes a specific evaluation of the proper setup of the washing strategy: flow separations involve wider regions in the compressor unit, and the removal capability is strongly related to the droplet path through the stages. The results show how in the off-design washing operation, the droplet diameter has greater importance than the water flow rate for reducing the deposits over the compressor stages.


Author(s):  
Jun Li ◽  
Jun Hu ◽  
Chenkai Zhang

The flow in a multistage axial compressor is highly unsteady, three-dimensional and turbulent. The interaction between compressor blade rows results in rotor/stator wake unsteadiness, which is not typically considered in the computational fluid dynamics (CFD) models. To gain depth and insight into the inner flow mechanism in multistage compressors, specifically the wake variability driven by the rotor/stator and stator/stator interactions, a compound total-pressure pneumatic probe with both high and low response-frequency were designed and manufactured. Unsteady rotor and stator wake measurements between blade rows for the third stage were carried out with this probe installing on a 3-DOF displacement mechanism, to deepen the knowledge of unsteady interactions in the embedded stages of a four-stage low-speed axial compressor. By performing frequency spectrum analysis and ensemble-average methods, higher spectral magnitude of the blade passing frequency (fBPF) and higher root mean square values of total pressure (PtRMS) at both sides of the stator wake region caused by the shedding of upstream boundary layer are revealed. In addition, the high-order harmonics are strengthened by the stator/stator interactions, especially near the blade tip. The individual contributions of rotor geometry variations/interactions of the upstream rotor wakes and the effects of downstream stator potential modulation to the wake variations can be understood.


2020 ◽  
Vol 50 (10) ◽  
pp. 1347-1358
Author(s):  
Hong WU ◽  
XiaoDong REN ◽  
XiaoChen WANG ◽  
ChunWei GU ◽  
XueSong LI

Sign in / Sign up

Export Citation Format

Share Document