boundary layer development
Recently Published Documents


TOTAL DOCUMENTS

344
(FIVE YEARS 30)

H-INDEX

30
(FIVE YEARS 1)

2021 ◽  
Author(s):  
Michael Hopfinger ◽  
Volker Gümmer

Abstract The development of viscous endwall flow is of major importance when considering highly-loaded compressor stages. Essentially, all losses occurring in a subsonic compressor are caused by viscous shear stresses building up boundary layers on individual aerofoils and endwall surfaces. These boundary layers cause significant aerodynamic blockage and cause a reduction in effective flow area, depending on the specifics of the stage design. The presented work describes the numerical investigation of blockage development in a 3.5-stage low-speed compressor with tandem stator vanes. The research is aimed at understanding the mechanism of blockage generation and growth in tandem vane rows and across the entire compressor. Therefore, the blockage generation is investigated as a function of the operating point, the rotational speed and the inlet boundary layer thickness.


Author(s):  
David Engelmann ◽  
Martin Sinkwitz ◽  
Francesca di Mare ◽  
Björn Koppe ◽  
Ronald Mailach ◽  
...  

This article provides a summarizing account of the results obtained in the current collaborative work of four research institutes concerning near-wall flow in turbomachinery. Specific questions regarding the influences of boundary layer development on blades and endwalls as well as loss mechanisms due to secondary flow are investigated. These address skewness, periodical distortion, wake interaction and heat transfer, among others. Several test rigs with modifiable configurations are used for the experimental investigations including an axial low speed compressor, an axial high-speed wind tunnel, and an axial low-speed turbine. Approved stationary and time resolving measurements techniques are applied in combination with custom hot-film sensor-arrays. The experiments are complemented by URANS simulations, and one group focusses on turbulence-resolving simulations to elucidate the specific impact of rotation. Juxtaposing and interlacing their results the four groups provide a broad picture of the underlying phenomena, ranging from compressors to turbines, from isothermal to non-adiabatic, and from incompressible to compressible flows.


2021 ◽  
Vol 139 (5) ◽  
pp. 613-616
Author(s):  
V. Sokolenko ◽  
W. Elsner ◽  
A. Dróżdż ◽  
R. Gnatowska

2021 ◽  
Vol 35 (2) ◽  
pp. 384-392
Author(s):  
Zhigang Cheng ◽  
Yubing Pan ◽  
Ju Li ◽  
Xingcan Jia ◽  
Xinyu Zhang ◽  
...  

Processes ◽  
2020 ◽  
Vol 8 (11) ◽  
pp. 1403
Author(s):  
Junsik Lee ◽  
Jae-Hak Lee

The turbulence intensity (TI) is defined as the ratio of fluctuation from the standard deviation of wind velocity to the mean value. Many studies have been performedon TI for flow dynamics and adapted various field such as aerodynamics, jets, wind turbines, wind tunnel apparatuses, heat transfer, safety estimation of construction, etc.The TI represents an important parameter for determining the intensity of velocity variation and flow quality in industrial fluid mechanics. In this paper, computational fluid dynamic (CFD) simulation of TI alteration with increasing temperature has been performed using the finite volume method. A high-temperature—maximum 300 degrees Celsius (°C)—wind tunnel test rig has been used as theapparatus, and velocity was measured by an I-type hot-wire anemometer. The velocity and TI of the core test section were operated at several degrees of inlet temperatures at anair velocity of 20 m/s. The magnitude of TI has a relationship with boundary layer development. The TI increased as temperature increased due to turbulence created by the non-uniformities.


Author(s):  
Wenhua Duan ◽  
Jian Liu ◽  
Weiyang Qiao

Abstract A numerical analysis of the effect of Mach number on the boundary layer development and aerodynamic performance of a high-lift, after loaded low pressure turbine blade is presented in this paper. The turbine blade is designed for the GTF engine and works in a low Reynolds number, high Mach number environment. Three different isentropic exit Mach numbers (0.14, 0.87 and 1.17) are simulated by large eddy simulation method, while the Reynolds number based on the axial chord length of the blade and the exit flow velocity is kept the same (1 × 105). The condition Mais,2 = 0.14 represents the lowspeeed wind tunnel environment which is usually used in the low pressure turbine investigation. The condition Mais,2 = 0.87 represents the design point of the turbine blade. The condition Mais,2 = 1.17 represents the severe environment when the shock wave shows up. A comparison of the boundary layer development is made and the total pressure loss results from the boundary layer is discussed.


Sign in / Sign up

Export Citation Format

Share Document