A General Orthotropic von Mises Plasticity Material Model With Mixed Hardening: Model Definition and Implicit Stress Integration Procedure

1996 ◽  
Vol 63 (2) ◽  
pp. 376-382 ◽  
Author(s):  
M. Kojic´ ◽  
N. Grujovic´ ◽  
R. Slavkovic´ ◽  
M. Zˇivkovic´

A general orthotropic von Mises plasticity model, with an extension of the Hill’s yield criterion to include mixed hardening, is introduced in the paper. Material constants and equivalent stress-equivalent plastic strain curves are defined in a way to suggest their experimental determination. The model represents a special case of a general anisotropic metal plasticity model proposed by the authors. An implicit stress integration procedure, representing an application of the governing parameter method (GPM) introduced by the first author, is presented. The GPM is briefly described, and the computational procedure, together with calculation of the consistent tangent moduli, are given in some detail for a general three-dimensional deformation, with direction of application to plane stress/shell conditions. Numerical examples illustrate applicability of the model and effectiveness of the computational algorithm.

2013 ◽  
Vol 577-578 ◽  
pp. 413-416
Author(s):  
Andrea Gilioli ◽  
Andrea Manes ◽  
Marco Giglio ◽  
Nima Allahverdizadeh

The widespread Von Mises plasticity model fails to take the hydrostatic and the Lode angle effects into account and the assumption of this model is not valid for all types of metallic alloys. Hence in the present work the applicability of the Von Mises plasticity model in applications on a Ti-6Al-4V Titanium alloy have been analysed. A virtual test methodology, combination of experiments and numerical analysis have been developed. For this purpose various tensile tests on different specimen shapes have been carried out experimentally. These tests have been subsequently numerically reproduced to calibrate a constitutive law which fits every single test best, highlighting the possible effect of triaxiality and Lode angle on plasticity (strain hardening behaviour). An analysis of the specimen fracture surfaces have been carried out to evaluate possible effect of triaxiality and Lode angle down to a microscopic level.


Metals ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 47
Author(s):  
Jelena Živković ◽  
Vladimir Dunić ◽  
Vladimir Milovanović ◽  
Ana Pavlović ◽  
Miroslav Živković

Steel structures are designed to operate in an elastic domain, but sometimes plastic strains induce damage and fracture. Besides experimental investigation, a phase-field damage model (PFDM) emerged as a cutting-edge simulation technique for predicting damage evolution. In this paper, a von Mises metal plasticity model is modified and a coupling with PFDM is improved to simulate ductile behavior of metallic materials with or without constant stress plateau after yielding occurs. The proposed improvements are: (1) new coupling variable activated after the critical equivalent plastic strain is reached; (2) two-stage yield function consisting of perfect plasticity and extended Simo-type hardening functions. The uniaxial tension tests are conducted for verification purposes and identifying the material parameters. The staggered iterative scheme, multiplicative decomposition of the deformation gradient, and logarithmic natural strain measure are employed for the implementation into finite element method (FEM) software. The coupling is verified by the ‘one element’ example. The excellent qualitative and quantitative overlapping of the force-displacement response of experimental and simulation results is recorded. The practical significances of the proposed PFDM are a better insight into the simulation of damage evolution in steel structures, and an easy extension of existing the von Mises plasticity model coupled to damage phase-field.


Sign in / Sign up

Export Citation Format

Share Document