Enhancing Hydrostatic Gear Efficiency Through Nonlinear Optimal Control Strategies

1996 ◽  
Vol 118 (4) ◽  
pp. 727-732 ◽  
Author(s):  
L. del Re ◽  
A˚. Go¨ransson ◽  
A. Astolfi

Energy efficiency and short response times are usually conflicting goals. In the case of hydrostatic gears, two basic system configurations are commonly used, which allow to obtain better efficiency—the primary control setup—or faster responses—the secondary control. In this paper, (1) a different control setup is proposed, combining both primary and secondary control, and this new setup is shown to allow even faster responses than the secondary control having, in general, much lower energy requirements. We also address (2) the question of the design of a multiobjective optimal control for the proposed nonlinear structure, showing that the noninferior set, i.e., the set of points where the reduction of one cost function needs the increase of the others, depends on the control algorithm used. It is shown that combined use of pump and motor swash plate displacement yields a better trade-off between response speed and efficiency, and that solving approximately the nonlinear optimization problem delivers better efficiency than optimizing a system consisting of the original plant and a linearizing feedback.

2013 ◽  
Vol 35 (3) ◽  
pp. 286-297 ◽  
Author(s):  
Jeremy M. Hamm ◽  
Tara L. Stewart ◽  
Raymond P. Perry ◽  
Rodney A. Clifton ◽  
Judith G. Chipperfield ◽  
...  

Sensors ◽  
2020 ◽  
Vol 20 (20) ◽  
pp. 5830
Author(s):  
Xuepei Wang ◽  
Xinwu Li ◽  
Daqi Fu ◽  
Rajko Vidrih ◽  
Xiaoshuan Zhang

Due to the presence of bioactive compounds, fruits are an essential part of people’s healthy diet. However, endogenous ethylene produced by climacteric fruits and exogenous ethylene in the microenvironment could play a pivotal role in the physiological and metabolic activities, leading to quality losses during storage or shelf life. Moreover, due to the variety of fruits and complex scenarios, different ethylene control strategies need to be adapted to improve the marketability of fruits and maintain their high quality. Therefore, this study proposed an ethylene dynamic monitoring based on multi-strategies control to reduce the post-harvest quality loss of fruits, which was evaluated here for blueberries, sweet cherries, and apples. The results showed that the ethylene dynamic monitoring had rapid static/dynamic response speed (2 ppm/s) and accurately monitoring of ethylene content (99% accuracy). In addition, the quality parameters evolution (firmness, soluble solids contents, weight loss rate, and chromatic aberration) showed that the ethylene multi-strategies control could effectively reduce the quality loss of fruits studied, which showed great potential in improving the quality management of fruits in the supply chain.


1986 ◽  
Vol 108 (4) ◽  
pp. 330-339 ◽  
Author(s):  
M. A. Townsend ◽  
D. B. Cherchas ◽  
A. Abdelmessih

This study considers the optimal control of dry bulb temperature and moisture content in a single zone, to be accomplished in such a way as to be implementable in any zone of a multi-zone system. Optimality is determined in terms of appropriate cost and performance functions and subject to practical limits using the maximum principle. Several candidate optimal control strategies are investigated. It is shown that a bang-bang switching control which is theoretically periodic is a least cost practical control. In addition, specific attributes of this class of problem are explored.


2013 ◽  
Vol 671-674 ◽  
pp. 2515-2519
Author(s):  
Xue Mei Wang ◽  
Zhen Hai Wang ◽  
Xing Long Wu

This project aims to study the optimal control model of the ice-storage system which is theoretically close to the optimal control and also applicable to actual engineering. Using Energy Plus, the energy consumption simulation software, and the simple solution method of optimal control, researchers can analyze and compare the annual operation costs of the ice-storage air-conditioning system of a project in Beijing under different control strategies. Researchers obtained the power rates of the air-conditioning system in the office building under the conditions of chiller-priority and optimal contro1 throughout the cooling season. Through analysis and comparison, they find that after the implementation of optimal control, the annually saved power bills mainly result from non-design conditions, especially in the transitional seasons.


2021 ◽  
Author(s):  
Mohsen Banaei ◽  
Jalil Boudjadar ◽  
Razgar Ebrahimy ◽  
Henrik Madsen

Sign in / Sign up

Export Citation Format

Share Document