Efficient Tool-Path Planning for Machining Free-Form Surfaces

1996 ◽  
Vol 118 (1) ◽  
pp. 20-28 ◽  
Author(s):  
Rong-Shine Lin ◽  
Y. Koren

This paper presents an analytical method for planning an efficient tool-path in machining free-form surfaces on 3-axis milling machines. This new approach uses a nonconstant offset of the previous tool-path, which guarantees the cutter moving in an unmachined area of the part surface and without redundant machining. The method comprises three steps: (1) the calculation of the tool-path interval, (2) the conversion from the path interval to the parametric interval, and (3) the synthesis of efficient tool-path planning.

2014 ◽  
Vol 53 ◽  
pp. 117-125 ◽  
Author(s):  
Qiang Zou ◽  
Juyong Zhang ◽  
Bailin Deng ◽  
Jibin Zhao

2008 ◽  
Vol 392-394 ◽  
pp. 771-776 ◽  
Author(s):  
Jian Ming Zhan ◽  
Xiao Qin Zhou ◽  
Li Yong Hu

Expected path of polishing tool is one of the most essential needs for movement scheduling and movement controlling of polishing robot in free-form surfaces polishing. By analyzing the expected movement and position of polishing tool and based on the traditional movement scheduling methods, this paper carries out systematic research works on contour-parallel-machining tool path planning method and direction-parallel-machining tool path planning method for polishing tool paths figuring out. Compared with contour-parallel-machining tool path planning method, the direction-parallel-machining tool path planning method needs one less number of degree of freedom and is much easier to avoid physical interventions and mechanic singularity, so it is an improved one.


2020 ◽  
Vol 108 (1-2) ◽  
pp. 73-90 ◽  
Author(s):  
Jianmeng Zhang ◽  
Rong Mo ◽  
Neng Wan ◽  
Chao Xia

Author(s):  
Feiyan Han ◽  
Juan Wei ◽  
Bin Feng ◽  
Wu Zhang

The manufacturing technology of an integral impeller is an important indicator for measuring the manufacturing capability of a country. Its manufacturing process involves complex free-form surface machining, a time consuming and error-prone process, and the tool path planning is considered as a critical issue of free-form surface machining but still lacks a systematic solution. In this paper, aiming at the tool path planning of the impeller channel, a quasi-triangular tool path planning method based on parametric domain template trajectory mapping is proposed. The main idea is to map the template trajectory to physical domain by using the mapping model of parametric domain to the physical domain to obtain the actual machining path. Firstly, the trajectory mapping model of parametric domain to physical domain is established using the morphing technique, and the template trajectory mapping method in the parametric domain is given. Secondly, the clean-up boundary of the impeller channel is determined in the parametric domain, and the quasi-triangular template trajectory of the impeller channel is defined. Finally, taking a certain type of impeller as an example, the quasi-triangular tool path of the impeller channel is calculated, and the tool path calculation time of this method is compared with that of the traditional isometric offset method. The result shows that the computational efficiency is improved by 45% with this method, which provides a new method for the rapid acquisition of NC machining tool path for impeller channels. In addition, the simulation and actual machining are carried out, the results show that the shape of actual cutting traces on the surface of the impeller channel is quasi-triangular, showing that this method is effective and feasible.


2019 ◽  
Vol 11 (1) ◽  
pp. 168781401881992 ◽  
Author(s):  
Junde Qi ◽  
Bing Chen

As for the fact that the majority of current researches take the technology of tool-path planning for free-form surface only as a geometrical problem, which is not suitable for belt grinding because of the elastic deformation of the grinding belt that leads to a variable contact, in this article, the tool-path planning method for belt grinding is developed from the elastic contact point of view. Based on the Hertzian contact theory and taking the grinding force into consideration, a calculation method of the contact area between the belt and the workpiece is presented. Then, a tool-path planning model is presented based on the real contact area to meet the full coverage. In addition, an optimization model based on the constant scallop-height is further developed to meet the high form accuracy of the workpiece. First, a modified model for the material removal depth is developed based on the Preston equation. Then, according to the curvature of the contact surface, three situations are analyzed and the calculation methods of the tool-path interval are given. Finally, experiments on the simulation blade are conducted, and the experimental results show the effectiveness of the method in this article.


Sign in / Sign up

Export Citation Format

Share Document