The Effect of Pressure Gradients on Transition Zone Length in Hypersonic Boundary Layers

1997 ◽  
Vol 119 (1) ◽  
pp. 36-41 ◽  
Author(s):  
R. L. Kimmel

Boundary layer transition was measured in zero, favorable, and adverse pressure gradients at Mach 8 using heat transfer. Models consisted of 7° half angle forecones 0.4826 m long, followed by flared or ogive aft bodies 0.5334 m long. The flares and ogives produced constant pressure gradients. For the cases examined, favorable pressure gradients delay transition and adverse pressure gradients promote transition, but transition zone lengths are shorter in favorable pressure gradient. Results of the effect of adverse pressure gradient on transition zone lengths were inconclusive.

1990 ◽  
Vol 112 (2) ◽  
pp. 196-205 ◽  
Author(s):  
G. J. Walker ◽  
J. P. Gostelow

Existing transition models are surveyed and deficiencies in previous predictions, which seriously overestimate transition length under an adverse pressure gradient, are discussed. A new model for transition in an adverse pressure gradient situation is proposed and experimental results are provided that confirm its validity. A correlation for transition length is advanced that incorporates both Reynolds number and pressure gradient effects. Under low free-stream turbulence conditions the basic mechanism of transition is laminar instability. There are, however, physical differences between zero and adverse pressure gradients. In the former case, transition occurs randomly, due to the breakdown of laminar instability waves in sets. For an adverse pressure gradient, the Tollmien–Schlichting waves appear more regularly with a well-defined spectral peak. As the adverse pressure gradient is increased from zero to the separation value the flow evolves continuously from random to periodic behavior and the dimensionless transition length progressively decreases.


1989 ◽  
Vol 111 (4) ◽  
pp. 366-374 ◽  
Author(s):  
J. P. Gostelow ◽  
A. R. Blunden

Boundary layer transition was measured on a flat plate for four different turbulence levels. A range of adverse pressure gradients was imposed for one of these. The zero pressure gradient results were in agreement with accepted data for transition inception, length, and turbulent spot formation rate. They were also well represented by Narasimha’s universal intermittency distribution. A surprisingly strong similarity was also exhibited by intermittency distributions under adverse pressure gradients. Dimensionless velocity profiles were reasonable for the zero pressure gradient cases but difficulties with skin-friction prediction were experienced under adverse pressure gradient conditions. For this moderate turbulence level the transition inception Reynolds number remained reasonably constant with pressure gradient. Transition lengths, however, were greatly reduced by the imposition of even a weak adverse pressure gradient. This was associated with a strong increase in turbulent spot formation rate.


Author(s):  
G. J. Walker ◽  
J. P. Gostelow

Existing transition models are surveyed and deficiencies in previous predictions, which seriously overestimate transition length under an adverse pressure gradient, are discussed. A new model for transition in an adverse pressure gradient situation is proposed and experimental results are provided which confirm its validity. A correlation for transition length is advanced which incorporates both Reynolds number and pressure gradient effects. Under low free-stream turbulence conditions the basic mechanism of transition is laminar instability. There are, however, physical differences between zero and adverse pressure gradients. In the former case transition occurs randomly, due to the breakdown of laminar instability waves in sets. For an adverse pressure gradient the Tollmien-Schlichting waves appear more regularly with a well-defined spectral peak. As the adverse pressure gradient is increased from zero to the separation value the flow evolves continuously from random to periodic behavior and the dimensionless transition length progressively decreases.


Author(s):  
Jeffrey P. Bons ◽  
Stephen T. McClain

Experimental measurements of heat transfer (St) are reported for low speed flow over scaled turbine roughness models at three different freestream pressure gradients: adverse, zero (nominally), and favorable. The roughness models were scaled from surface measurements taken on actual, in-service land-based turbine hardware and include samples of fuel deposits, TBC spallation, erosion, and pitting as well as a smooth control surface. All St measurements were made in a developing turbulent boundary layer at the same value of Reynolds number (Rex≅900,000). An integral boundary layer method used to estimate cf for the smooth wall cases allowed the calculation of the Reynolds analogy (2St/cf). Results indicate that for a smooth wall, Reynolds analogy varies appreciably with pressure gradient. Smooth surface heat transfer is considerably less sensitive to pressure gradients than skin friction. For the rough surfaces with adverse pressure gradient, St is less sensitive to roughness than with zero or favorable pressure gradient. Roughness-induced Stanton number increases at zero pressure gradient range from 16–44% (depending on roughness type), while increases with adverse pressure gradient are 7% less on average for the same roughness type. Hot-wire measurements show a corresponding drop in roughness-induced momentum deficit and streamwise turbulent kinetic energy generation in the adverse pressure gradient boundary layer compared with the other pressure gradient conditions. The combined effects of roughness and pressure gradient are different than their individual effects added together. Specifically, for adverse pressure gradient the combined effect on heat transfer is 9% less than that estimated by adding their separate effects. For favorable pressure gradient, the additive estimate is 6% lower than the result with combined effects. Identical measurements on a “simulated” roughness surface composed of cones in an ordered array show a behavior unlike that of the scaled “real” roughness models. St calculations made using a discrete-element roughness model show promising agreement with the experimental data. Predictions and data combine to underline the importance of accounting for pressure gradient and surface roughness effects simultaneously rather than independently for accurate performance calculations in turbines.


Author(s):  
H. Pfeil ◽  
R. Herbst ◽  
T. Schröder

The boundary layer transition under instationary afflux conditions as present in the stages of turbomachines is investigated. A model for the transition process is introduced by means of time-space distributions of the turbulent spots during transition and schematic drawings of the instantaneous boundary layer thicknesses. To confirm this model, measurements of the transition with zero and favorable pressure gradient are performed.


2004 ◽  
Vol 126 (3) ◽  
pp. 385-394 ◽  
Author(s):  
Jeffrey P. Bons ◽  
Stephen T. McClain

Experimental measurements of heat transfer (St) are reported for low speed flow over scaled turbine roughness models at three different freestream pressure gradients: adverse, zero (nominally), and favorable. The roughness models were scaled from surface measurements taken on actual, in-service land-based turbine hardware and include samples of fuel deposits, TBC spallation, erosion, and pitting as well as a smooth control surface. All St measurements were made in a developing turbulent boundary layer at the same value of Reynolds number Rex≅900,000. An integral boundary layer method used to estimate cf for the smooth wall cases allowed the calculation of the Reynolds analogy 2St/cf. Results indicate that for a smooth wall, Reynolds analogy varies appreciably with pressure gradient. Smooth surface heat transfer is considerably less sensitive to pressure gradients than skin friction. For the rough surfaces with adverse pressure gradient, St is less sensitive to roughness than with zero or favorable pressure gradient. Roughness-induced Stanton number increases at zero pressure gradient range from 16–44% (depending on roughness type), while increases with adverse pressure gradient are 7% less on average for the same roughness type. Hot-wire measurements show a corresponding drop in roughness-induced momentum deficit and streamwise turbulent kinetic energy generation in the adverse pressure gradient boundary layer compared with the other pressure gradient conditions. The combined effects of roughness and pressure gradient are different than their individual effects added together. Specifically, for adverse pressure gradient the combined effect on heat transfer is 9% less than that estimated by adding their separate effects. For favorable pressure gradient, the additive estimate is 6% lower than the result with combined effects. Identical measurements on a “simulated” roughness surface composed of cones in an ordered array show a behavior unlike that of the scaled “real” roughness models. St calculations made using a discrete-element roughness model show promising agreement with the experimental data. Predictions and data combine to underline the importance of accounting for pressure gradient and surface roughness effects simultaneously rather than independently for accurate performance calculations in turbines.


1983 ◽  
Vol 105 (1) ◽  
pp. 130-137 ◽  
Author(s):  
H. Pfeil ◽  
R. Herbst ◽  
T. Schro¨der

The boundary layer transition under instationary afflux conditions as present in the stages of turbomachines is investigated. A model for the transition process is introduced by means of time-space distributions of the turbulent spots during transition and schematic drawings of the instantaneous boundary layer thicknesses. To confirm this model, measurements of the transition with zero and favorable pressure gradient are performed.


Sign in / Sign up

Export Citation Format

Share Document