Volume 1: Turbomachinery
Latest Publications


TOTAL DOCUMENTS

115
(FIVE YEARS 0)

H-INDEX

8
(FIVE YEARS 0)

Published By American Society Of Mechanical Engineers

9780791879139

1989 ◽  
Author(s):  
R. A. Van Den Braembussche ◽  
B. M. Hände

Measurements of the three-dimensional flow in a simplified model of a centrifugal compressor volute at design and off-design operation are presented.


Author(s):  
Lichuan Gui ◽  
Chuangang Gu ◽  
Hongshou Chang

Centrifugal fan and compressors with splitter blades are widely utilized in engineering practices. A detail investigation of the influences of splitter blades on a forward-curved centrifugal fan performances is presented in the paper. The study includes two parts: experiment and numerical calculation. The experiments were produced in a specific impeller with adjustable splitter blades in order to get the performances in different conditions. The internal flow field in the impeller was calculated by means of FEASM (Finite Element Approximate Solution Method, Gu, 1984). The experimental result show that changing the circumferential positions of the splitter blades has a noticeble influence on the fan performance, the incidence of splitter blades also has a certain effect on it, and properly lengthened splitter blades can raise the total pressure coefficient. The velocity and load distributions on the blade surfaces calculated can be used to analyse the phenomena above satisfactorily.


Author(s):  
J. A. Walsh ◽  
D. G. Gregory-Smith

This paper presents results of an experimental investigation into the effects of inlet skew on the flowfield of a large scale axial flow turbine cascade. The results are presented in terms of the development of the streamwise vorticity since, in classical terms, the streamwise vorticity generates the transverse velocity components that cause the generation of the secondary losses. Inlet skew is shown to have a profound effect on the distribution and magnitude of the generated losses. A number of correlations for the secondary losses are compared with the measured values and it is shown that the correlations are not adequate for accurate loss prediction purposes.


Author(s):  
Kazuomi Yamamoto ◽  
Yoshimichi Tanida

A self-excited oscillation of transonic flow in a simplified cascade model was investigated experimentally, theoretically and numerically. The measurements of the shock wave and wake motions, and unsteady static pressure field predict a closed loop mechanism, in which the pressure disturbance, that is generated by the oscillation of boundary layer separation, propagates upstream in the main flow and forces the shock wave to oscillate, and then the shock oscillation disturbs the boundary layer separation again. A one-dimensional analysis confirms that the self-excited oscillation occurs in the proposed mechanism. Finally, a numerical simulation of the Navier-Stokes equations reveals the unsteady flow structure of the reversed flow region around the trailing edge, which induces the large flow separation to bring about the anti-phase oscillation.


Author(s):  
Huashu Dou

The flow losses in the veneless diffusers of centrifugal compressors is investigated. It is found that the total energy loss in vaneless diffusers is a function of Bsin2 α0 when inlet flow conditions and radius ratio between inlet and outlet are given. A wall friction coefficient equation is derived and a method of predicting the total energy loss excepting mixing loss is presented. A comparison is made between results obtained from this method and experimental data generated by the author as well as data from the literature. Good agreement is obtained.


1989 ◽  
Author(s):  
Huang Xiaoyan ◽  
Wang Qinghuan ◽  
Zhang Chao

In order to develop a CAD computer code system for centrifugal compressor, a numerical technique for design and flow analysis of vaned diffusers has been introduced in this paper. The design of diffusers has been performed by a streamline extension method. The velocity and pressure distributions at design and off-design operating modes have been calculated by a time-dependent finite difference scheme and have been corrected by boundary layer calculations. The numerical results are compared with experimental measurements, and the agreement is satisfactory.


Author(s):  
M. Yaras ◽  
S. A. Sjolander

The paper presents detailed measurements of the tip-leakage flow emerging from a planar cascade of turbine blades. Four clearances of from 1.5 to 5.5 percent of the blade chord are considered. Measurements were made at the trailing edge plane, and at two main planes 1.0 and 1.56 axial chord lengths downstream of the cascade. The results give insight into several aspects of the leakage flow including: the size and strength of the leakage vortex in relation to the size of the tip gap and the bound circulation of the blade; and the evolution of the components of vorticity as the vortex diffuses laterally downstream of the blade row. The vortex was found to have largely completed its roll-up into a nearly axisymmetric structure even at the trailing edge of the cascade. As a result, it was found that the vortex could be modelled surprisingly well with a simple model based on the diffusion of a line vortex.


Author(s):  
Hidekazu Kodama ◽  
Masanobu Namba

A lifting surface theory is developed to predict the unsteady three-dimensional aerodynamic characteristics for a rotating subsonic annular cascade of swept blades. A discrete element method is used to solve the integral equation for the unsteady blade loading. Numerical examples are presented to demonstrate effects of the sweep on the blade flutter and on the acoustic field generated by interaction of rotating blades with a convected sinusoidal gust. It is found that increasing the sweep results in decrease of the aerodynamic work on vibrating blades and also remarkable reduction of the modal acoustic power of lower radial orders for both forward and backward sweeps.


Author(s):  
N. K. W. Lee ◽  
E. M. Greitzer

An experimental investigation was carried out to examine the effects on stall margin of flow injection into, and flow removal out of, the endwall region of an axial compressor blade row. A primary objective of the investigation was clarification of the mechanism by which casing treatment (which involves both removal and injection) suppresses stall in turbomachines. To simulate the relative motion between blade and treatment, the injection and removal took place through a slotted hub rotating beneath a cantilevered stator row. Overall performance data and detailed (time-averaged) flowfield measurements were obtained. Flow injection and removal both increased the stalling pressure rise, but neither was as effective as the wall treatment. Removal of high blockage flow is thus not the sole reason for the observed stall margin improvement in casing or hub treatment, as injection can also contribute significantly to stall suppression. The results also indicate that the increase in stall pressure rise with injection is linked to the streamwise momentum of the injected flow, and it is suggested that this should be the focus of further studies.


Author(s):  
R. C. Pampreen

The design features and development experience of an advanced automotive gas turbine centrifugal compressor are presented. The compressor was designed with moderately low specific speed, high blade aerodynamic loading and design point on the choke characteristic. A cascade diffuser was used; a new design approach brought about an unusual performance characteristic. The influence of impeller blade loading on performance is presented. Lessons learned are summarized.


Sign in / Sign up

Export Citation Format

Share Document