Inverse Determination of Boundary Conditions and Sources in Steady Heat Conduction With Heat Generation

1996 ◽  
Vol 118 (3) ◽  
pp. 546-554 ◽  
Author(s):  
T. J. Martin ◽  
G. S. Dulikravich

A Boundary Element Method (BEM) implementation for the solution of inverse or ill-posed two-dimensional Poisson problems of steady heat conduction with heat sources and sinks is proposed. The procedure is noniterative and cost effective, involving only a simple modification to any existing BEM algorithm. Thermal boundary conditions can be prescribed on only part of the boundary of the solid object while the heat sources can be partially or entirely unknown. Overspecified boundary conditions or internal temperature measurements are required in order to compensate for the unknown conditions. The weighted residual statement, inherent in the BEM formulation, replaces the more common iterative least-squares (L2) approach, which is typically used in this type of ill-posed problem. An ill-conditioned matrix results from the BEM formulation, which must be properly inverted to obtain the solution to the ill-posed steady heat conduction problem. A singular value decomposition (SVD) matrix solver was found to be more effective than Tikhonov regularization for inverting the matrix. Accurate results have been obtained for several steady two-dimensional heat conduction problems with arbitrary distributions of heat sources where the analytic solutions were available.

Author(s):  
Zhi Qian ◽  
Benny Y. C. Hon ◽  
Xiang Tuan Xiong

AbstractWe investigate a two-dimensional radially symmetric inverse heat conduction problem, which is ill-posed in the sense that the solution does not depend continuously on input data. By generalizing the idea of kernel approximation, we devise a modified kernel in the frequency domain to reconstruct a numerical solution for the inverse heat conduction problem from the given noisy data. For the stability of the numerical approximation, we develop seven regularization techniques with some stability and convergence error estimates to reconstruct the unknown solution. Numerical experiments illustrate that the proposed numerical algorithm with regularization techniques provides a feasible and effective approximation to the solution of the inverse and ill-posed problem.


1966 ◽  
Vol 10 (2) ◽  
pp. 163-166 ◽  
Author(s):  
Yu. Ya. Iossel ◽  
R. A. Pavlovskii

2016 ◽  
Vol 20 (suppl. 3) ◽  
pp. 735-738 ◽  
Author(s):  
Feng Gao ◽  
Xiao-Jun Yang

In this paper, the local fractional Euler?s method is proposed to consider the steady heat-conduction problem for the first time. The numerical solution for the local fractional heat-relaxation equation is presented. The comparison between numerical and exact solutions is discussed.


Sign in / Sign up

Export Citation Format

Share Document