Numerical solution of two-dimensional radially symmetric inverse heat conduction problem

Author(s):  
Zhi Qian ◽  
Benny Y. C. Hon ◽  
Xiang Tuan Xiong

AbstractWe investigate a two-dimensional radially symmetric inverse heat conduction problem, which is ill-posed in the sense that the solution does not depend continuously on input data. By generalizing the idea of kernel approximation, we devise a modified kernel in the frequency domain to reconstruct a numerical solution for the inverse heat conduction problem from the given noisy data. For the stability of the numerical approximation, we develop seven regularization techniques with some stability and convergence error estimates to reconstruct the unknown solution. Numerical experiments illustrate that the proposed numerical algorithm with regularization techniques provides a feasible and effective approximation to the solution of the inverse and ill-posed problem.

2013 ◽  
Vol 10 (02) ◽  
pp. 1341009 ◽  
Author(s):  
MING LI ◽  
XIANG-TUAN XIONG ◽  
YAN LI

In this paper, we consider an inverse heat conduction problem with variable coefficient a(t). In many practical situations such as an on-line testing, we cannot know the initial condition for example because we have to estimate the problem for the heat process which was already started. Based on the method of fundamental solutions, we give a numerical scheme for solving the reconstruction problem. Since the governing equation contains variable coefficients, modified method of fundamental solutions was used to solve this kind of ill-posed problems. Some numerical examples are given for verifying the efficiency and accuracy of the presented method.


Sign in / Sign up

Export Citation Format

Share Document