The Effect of Temperature-Dependent Viscosity on the Onset of Convection in a Saturated Porous Medium

1996 ◽  
Vol 118 (3) ◽  
pp. 803-805 ◽  
Author(s):  
D. A. Nield
2014 ◽  
Vol 19 (2) ◽  
pp. 321-336
Author(s):  
R. Sekar ◽  
K. Raju

Abstract Soret driven ferrothermoconvective instability in multi-component fluids has a wide range of applications in heat and mass transfer. This paper deals with the theoretical investigation of the effect of temperature dependent viscosity on a Soret driven ferrothermohaline convection heated from below and salted from above subjected to a transverse uniform magnetic field in the presence of a porous medium. The Brinkman model is used in the study. It is found that the stationary mode of instability is preferred. For a horizontal fluid layer contained between two free boundaries an exact solution is examined using the normal mode technique for a linear stability analysis. The effect of salinity has been included in magnetization and density of the fluid. The critical thermal magnetic Rayleigh number for the onset of instability is obtained numerically for sufficiently large values of the buoyancy magnetization parameter M1 using the method of numerical Galerkin technique. It is found that magnetization and permeability of the porous medium destabilize the system. The effect of temperature dependent viscosity stabilizes the system on the onset of convection.


1989 ◽  
Vol 206 ◽  
pp. 497-515 ◽  
Author(s):  
A. C. Or

Convection of two-dimensional rolls in an infinite horizontal layer of fluid-saturated porous medium heated from below is studied numerically. Several important finite-amplitude states are isolated, and their bifurcation properties are shown. Effects of the temperature-dependent viscosity are included. The stability of these states is investigated with respect to the class of disturbances that have a ½π phase shift relative to the basic state. In particular, the oscillatory mechanism and the mean-flow generating mechanism through the variable viscosity are discussed.


Sign in / Sign up

Export Citation Format

Share Document