Soret and Dufour effects on heat and mass transfer by mixed convection over a vertical surface saturated porous medium with temperature dependent viscosity

2011 ◽  
Vol 69 (10) ◽  
pp. 1633-1645 ◽  
Author(s):  
S.M.M. EL-Kabeir
2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
A. M. Salem

A numerical model is developed to study the effects of temperature-dependent viscosity on heat and mass transfer flow of magnetohydrodynamic(MHD) micropolar fluids with medium molecular weight along a permeable stretching surface embedded in a non-Darcian porous medium in the presence of viscous dissipation and chemical reaction. The governing boundary equations for momentum, angular momentum (microrotation), and energy and mass transfer are transformed to a set of nonlinear ordinary differential equations by using similarity solutions which are then solved numerically by shooting technique. A comparison between the analytical and the numerical solutions has been included. The effects of the various physical parameters entering into the problem on velocity, microrotation, temperature and concentration profiles are presented graphically. Finally, the effects of pertinent parameters on local skin-friction coefficient, local Nusselt number and local Sherwood number are also presented graphically. One important observation is that for some kinds of mixtures (e.g., H2, air) with light and medium molecular weight, the magnetic field and temperature-dependent viscosity effects play a significant role and should be taken into consideration as well.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
D. Srinivasacharya ◽  
O. Surender

This paper presents the nonsimilarity solutions for mixed convection heat and mass transfer along a semi-infinite vertical plate embedded in a doubly stratified fluid saturated porous medium in the presence of Soret and Dufour effects. The flow in the porous medium is described by employing the Darcy-Forchheimer based model. The nonlinear governing equations and their associated boundary conditions are initially cast into dimensionless forms and then solved numerically. The influence of pertinent parameters on dimensionless velocity, temperature, concentration, heat, and mass transfer in terms of the local Nusselt and Sherwood numbers is discussed and presented graphically.


2013 ◽  
Vol 40 (4) ◽  
pp. 525-542 ◽  
Author(s):  
D. Srinivasacharya ◽  
Swamy Reddy

Mixed convection heat and mass transfer along a vertical plate embedded in a power-law fluid saturated Darcy porous medium with Soret and Dufour effects is studied. The governing partial differential equations are transformed into ordinary differential equations using similarity transformations and then solved numerically using shooting method. The effect of Soret and Dufour parameters, power law index and mixed convection parameter on non-dimensional velocity, temperature and concentration fields are discussed. The variation of different parameters on heat and mass transfer rates is presented in tabular form.


Sign in / Sign up

Export Citation Format

Share Document