Prediction of Thermal Contact Conductance in Vacuum by Statistical Mechanics

1998 ◽  
Vol 120 (1) ◽  
pp. 51-57 ◽  
Author(s):  
M. Leung ◽  
C. K. Hsieh ◽  
D. Y. Goswami

Despite substantial theoretical studies of thermal contact conductance in the past, the application of statistical mechanics in this field has never been attempted. This paper addresses contact conductance from macroscopic and microscopic viewpoints in order to demonstrate the promise of the statistical mechanics approach. In the first part of the derivation, the Boltzmann statistical model is applied to determine the most probable distribution of asperity heights for a homogeneously, isotropically rough surface. The result found is equivalent to Gaussian distribution, which has only been assumed but not rigorously substantiated in the past. Subsequently, the Boltzmann statistical model is applied to predict the distribution of true contact spots when two such surfaces are pressed together, resulting in a relationship between the total thermal contact conductance and the relative interfacial pressure. The numerical results are compared to published empirical data, and a good order-of-magnitude agreement is found.

10.2514/3.870 ◽  
1997 ◽  
Vol 11 ◽  
pp. 129-140
Author(s):  
B. Merci ◽  
J. Steelant ◽  
J. Vierendeels ◽  
K. Riemslagh ◽  
E. Dick ◽  
...  

10.2514/3.871 ◽  
1997 ◽  
Vol 11 ◽  
pp. 141-145
Author(s):  
Andreas Haselbacher ◽  
Jiri Blazek ◽  
S. R. Mirmira ◽  
E. Marotta ◽  
L. S. Fletcher

2009 ◽  
Vol 131 (6) ◽  
Author(s):  
Jianfeng Shi ◽  
Jinyang Zheng ◽  
Weican Guo ◽  
Ping Xu ◽  
Yongquan Qin ◽  
...  

With the increasing application of electrofusion (EF) welding in connecting polyethylene (PE) pipes for gas distribution, more effort has been invested to ensure the safety of the pipeline systems. The objective of this paper is to investigate and understand the temperature distribution during EF welding. A one-dimensional transient heat-transfer model was proposed, taking the variation in the rate of power input, the phase transition of PE, and the thermal contact conductance between heating wire and PE into consideration. Then, experiments were designed to verify the power input and the temperature. The measured values of the power input were shown to be in good agreement with the analytical results. Based on ultrasonic test (UT), a new “Eigen-line” method was presented, which overcomes the difficulties found in the thermocouples’ temperature measurements. The results demonstrate good agreements between prediction and experiment. Finally, based on the presented model, a detailed parametric study was carried out to investigate the influences of the variation in the power input, the physical properties of PE, and the thermal contact conductance between heating wire and surrounding PE.


Sign in / Sign up

Export Citation Format

Share Document