epoxy resin composites
Recently Published Documents


TOTAL DOCUMENTS

536
(FIVE YEARS 136)

H-INDEX

53
(FIVE YEARS 10)

Polymers ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 333
Author(s):  
Amal Nassar ◽  
Mona Younis ◽  
Mohamed Ismail ◽  
Eman Nassar

This work investigated the effects of using a new fabrication technique to prepare polymer composite on the wear-resistant performance of epoxy resin composites under dry friction conditions. Polymer composite samples with different weight contents of silicon carbide (SiC) particles were manufactured. This paper addresses the wear behavior of the obtained samples. With the suggested technique, the samples were prepared from epoxy/silicon carbide particles using a layer of thin kraft paper to prevent the sedimentation of the ceramic particles and to control the weight content of ceramic in the polymer. Kraft paper was used as a layer in the polymer composite. The hardness, wear resistance, and water absorption capacity of the produced epoxy composite samples prepared using the kraft paper technique were evaluated. The morphology of epoxy composite samples showed a significant improvement in the ceramic distribution and enhancement of interface bonding between ceramic and the polymer. The hardness values of the developed polymer composites were enhanced by up to 42.8%, which was obtained at 18 wt.% SiC particles. Increasing the ceramic content in the epoxy also led to the enhancement of wear resistance compared with pure epoxy. The results of the microstructure study also showed that the kraft paper layers helped in maintaining the distribution of the ceramic particles according to the previously specified content in each layer in the sample. Wear tests showed that the wear rate of the polymer composite decreased with the increase in the ceramic content. This study provides a new recycling method for using old kraft paper in polymer composite manufacturing to improve the distribution of ceramic particles in the polymer matrix.


Carbon ◽  
2022 ◽  
Vol 186 ◽  
pp. 738
Author(s):  
Li Wen-long ◽  
Li Xuan-ke ◽  
Shen Ke ◽  
Xu Hui-tao ◽  
Guo Jian-guang ◽  
...  

2021 ◽  
Author(s):  
Fang‐cheng Lü ◽  
Jing‐xuan Song ◽  
Hao‐ou Ruan ◽  
Mei‐ying Zhu ◽  
Shuang‐shuang Wang ◽  
...  

2021 ◽  
Vol 5 (10) ◽  
pp. 266
Author(s):  
Yoshimichi Ohki ◽  
Naoshi Hirai ◽  
Takahiro Umemoto ◽  
Hirotaka Muto

We prepared six kinds of epoxy resin nanocomposites with silica and an epoxy resin with no silica. The nanocomposites contain silica with different diameters (10, 50, and 100 nm) while their silica contents are 1, 5, 10, and 20 vol%. At 25 and 100 °C, the thermal conductivity has a nearly proportional dependence on the silica content and exhibits an almost reciprocal proportionality to the diameter of the silica. The latter result indicates that the interaction at filler-resin interfaces plays a significant role in heat transfer. However, this view contradicts an easy-to-understand thought that the filler-resin interfaces should work as a barrier for heat transfer. This in turn indicates that the interaction at filler-resin interfaces controls the bulk properties of the resin when the filler is in a nm size. Although the dielectric constant increases with the addition of the silica filler, its increment from the resin with no silica is the smallest in the resin with the 10-nm silica. Therefore, the addition of the 10-nm silica is adequate for electrical insulation purposes.


Sign in / Sign up

Export Citation Format

Share Document