power input
Recently Published Documents


TOTAL DOCUMENTS

786
(FIVE YEARS 185)

H-INDEX

35
(FIVE YEARS 4)

Author(s):  
Benhanifia Kada ◽  
Rahmani Lakhdar ◽  
Mebarki Brahim ◽  
Houari Ameur

The fluid flows and power consumption in a vessel stirred by anchor impellers are investigated in this paper. The case of rheologically complex fluids modeled by the Bingham-Papanastasiou model is considered. New modifications in the design of the classical anchor impeller are introduced. A horizontal blade is added to the standard geometry of the anchor, and the effect of its inclination angle (α) is explored. Four geometrical configurations are realized, namely: α = 0°, 20°, 40°, and 60°. The effects of the number of added horizontal blades, Reynolds number, and Bingham number are also examined. The obtained findings reveal that the most efficient impeller design is that with (case 4) arm blades inclined by 60°.This case allowed the most expansive cavern size with enhanced shearing in the whole vessel volume. The effect of adding second horizontal arm blades (with 60°) gave better hydrodynamic performance only with a slight increase in power consumption. A significant impact of Bingham number (Bn) was observed, where Bn = 5 allowed obtaining the lowest power input and most expansive well-stirred region.


Energies ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 275
Author(s):  
Ali Khanjari ◽  
Sangkyun Kang ◽  
Daeyong Lee ◽  
Dae-Yi Jung ◽  
Jang-Ho Lee

Changing the magnetic field on a conductor metal can induce eddy currents, which cause heat generation. In this paper, we use this idea to convert wind energy into thermal energy directly. This system contains a vertical axis wind turbine and an eddy currents heat generator. The eddy currents heat generator has two parts. The first part is a rotor with some permanent magnets causing the magnetic field changes, and the second part is a stator that acts as a conductor. The magnetic field changes in the heat generator play an important role in power output; therefore, we test four different magnet arrangements with different pole numbers on the rotor at different rotational speeds from 100 rpm to 500 rpm to measure the input torque and power needed to rotate each model. Then, based on the measured data, the wind turbine is designed by Qblade software based on the blade element momentum theory. It is shown that compared to the weight of the heat generator and the area of magnetization, designing a proper magnet arrangement for the heat generator can change the output power considerably as it can trigger the magnetic field fluctuation along the direction of rotation. For example, opting for a proper arrangement on the rotor decreases the number of poles from 120 to 24 but increases the power input from 223 W to 1357 W.


2021 ◽  
pp. 13-22
Author(s):  
Serhii Shuklinov ◽  
Anatoly Uzhva ◽  
Mikhail Lysenko ◽  
Anastasia Tishenko ◽  
Yevgeniya Novikova

Problem. The disadvantage of current dependences for determining the acceleration indicators at engine maximum brake power and driving tire-to-surface friction coefficients is that they are adequate only if the engine and transmission parameters provide power input to the drive wheels rolling without slipping regardless to speed. To eliminate this drawback, it is necessary to take into account that the power input to the drive wheels depends on the engine shaft speed, and therefore on the speed of the vehicle when accelerating. Goal. The purpose of the work is to further develop the theory of the automobile by improving the dependencies that allow determining the automobile acceleration rates and assessing the nature of its acceleration process from the design factors. Methodology. The approaches taken to achieve this goal are based on laws of physics, theoretical mechanics and the theory of automobile. Results. Analytic dependences for determining maximum and limiting automobile acceleration when speeding up depending on its design factors and speed have been improved. Dependences for determining the range of drive wheel slipping on the automobile speed when accelerating and the limiting automobile acceleration under the condition of its pitch stability have been obtained. When studying the automobile acceleration process theoretically it was found that the developed dependences allow determining the nature of automobile movement and assessing the influence of its design factors on the acceleration indicators. Originality. The obtained dependences for determining the maximum and limiting acceleration, the range of driving speeds with wheel slip when automobile accelerating allowed us to clarify the idea of the nature of movement during acceleration and the influence of automobile design factors on the acceleration indicators. Practical value. The obtained dependences can be used in designing new and improving racing cars such as dragsters, and analysing the dynamics of the vehicle when accelerating with full fuel delivery and determining the nature of driving tire-to-surface friction depending on the driving speed.


2021 ◽  
Author(s):  
Sagi Tadmor ◽  
Sapir Carmi ◽  
Monika Pinchas

In this paper, we propose for the 16 quadrature amplitude modulation (QAM) input case, a dual-mode (DM), decision directed (DD) multimodulus algorithm (MMA) algorithm for blind adaptive equalization which we name as DM-DD-MMA. In this new proposed algorithm, the MMA method is switched to the DD algorithm, based on a previously obtained expression for the step-size parameter valid at the convergence state of the blind adaptive equalizer, that depends on the channel power, input signal statistics and on the properties of the chosen algorithm. Simulation results show that improved equalization performance is obtained for the 16 QAM input case compared with the DM-CMA (where CMA is the constant modulus algorithm), DM-MCMA (where MCMA is the modified CMA) and MCMA-MDDMA (where MDDMA is the modified decision directed modulus algorithm).


2021 ◽  
Vol 11 (12) ◽  
pp. 2937-2949
Author(s):  
M. Rajakumaran ◽  
S. Ramabalan

Future mechanical frameworks will be arranged in exceptionally organized conditions in which they speak with modern control frameworks, cloud administrations or various other systems at distant areas. In this pattern of solid digitization of modern frameworks (likewise some of the time alluded to as Industry 4.0), digital assaults are an in-wrinkling danger to the uprightness of the automated frameworks at the center of this unique turn of events. It is normal, that the ROS shall assume a significant function in advanced mechanics outside of unadulterated exploration situated situations. ROS anyway has noteworthy security issues which should be tended to before such items should arrive at mass business sectors. Robot Operating System has emerged promptly as an alluring production method at micro and nano scales, particularly in the area of biomedical applications because of its flexibility and condensed size. As disputed to conventional grippers in the field of biomedical applications where mobility is less and show size restriction threats, ROS based micro-grippers are clear from outside power input and yield better mobility. It also has a significant impact on the field of biomedical surgery, where security is a major threat. With the current improvements in wireless communications, Tactile Internet has endorsed a dominant impact. It is regarded as the future huge development which can give current-time regulation in industrial systems, especially in the field of tele surgery. Even though, in remote-surgery environment the data transfer is subjected to various attack points. Hence, in order to understand the real capacity of safe tele-surgery, it is needed to develop a safe verification and key agreement protocol for tele-surgery. We offer here an effective, secure and common verification method in the field of biomedical application in the field of robotic tele-operation. The developed protocol ensures safe interaction samidst the surgeon, robotic arm, and the devoted jurisdiction; The results obtained express the flexibility of the protocol against offline password assuming attacks, replay attacks, imitation attacks, man-in-the-middle attacks, DoS attacks, etc.


2021 ◽  
Vol 57 (6) ◽  
pp. 50-59
Author(s):  
Ю. О. Адамчук ◽  
◽  
С. В. Чущак ◽  
Л. З. Богуславский ◽  
А. В. Синчук ◽  
...  

A series of electrical explosions in propane-butane of single and strand-connected Ti and W conductors with various diameters was carried out. Electrophysical characteristics of the explosion revealed that resistive heating of conductors is characterized by two monotonically ascending sections on the voltage – current curves separated by a flat segment (plateau), which corresponds to relatively stable electrical resistivity of refractory metals in the liquid state. The energy deposited by changing the power input into the conductor during its resistive heating, which can be higher or lower than its sublimation energy and can be regulated by changing the external adjustable parameters of the discharge circuit, is a key indicator determining the structural-phase state of destructed and chemically synthesized products after the explosion. The conditions are achieved under which micro- and nano-sized powder products do not contain residual metals and consist of carbide phases completely (TiC with an average microhardness of 29580 MPa as a result of the titanium explosion and a mixture of W2C+WC1-х, in which stabilized high-temperature non-stoichiometric cubic carbide WC1-x dominates, with an average microhardness of 16770 MPa as a result of tungsten explosion).


2021 ◽  
Vol 3 (12) ◽  
Author(s):  
Baranivignesh Prakash ◽  
Jarmo Kouko ◽  
Veli-Matti Luukkainen ◽  
Ari Jäsberg ◽  
Antti I. Koponen

AbstractMixing tanks are employed in paper and pulp industries to generate aqueous foams and fiber foams. The aim of the present study was to investigate the effect of impeller geometry on dynamic foam generation in a 60 L mixing tank. Three impeller geometries including two radial—Rushton turbine (RT), Bakker turbine (BT6), one axial high solidity pitched blade turbine (HSPBT), and four dual impeller combinations were investigated. Compressed air, water and sodium dodecyl sulphate were used as gas phase, liquid phase and surfactant, respectively, to generate aqueous foam. 1% mass consistency softwood fiber was used to generate fiber foam. The change in aqueous foam density for any given impeller was limited to ± 40 kg/m3 indicating foam density was dictated by impeller type rather than power input. Single impellers generated bubbly liquids whereas dual impellers generated low-density aqueous foams. Besides, stable foam was produced even at low power input compared to single impellers due to increase in impeller swept volume and blade contact area. Addition of fibers increased the foam density by ~ 100–150 kg/m3 and reduced the half-life time by almost threefold for all impellers due to lower air content and higher bubble size. Placement of high shear impeller (BT6) at bottom and down-pumping axial impeller (HSPBT) on top generated fine bubbles.


2021 ◽  
Vol 31 (1) ◽  
pp. 27-39
Author(s):  
Essa Ibrahim Essa ◽  
Mshari A. Asker ◽  
Fidan T. Sedeeq

Abstract Using optical add–drop multiplexer/remover multiplexer (OADM), it is possible to add or remove wavelengths and change or route them through the various nodes and networks. At this moment, key problems in add–drop multiplexer (ADM) are the bandwidth, modulation format, and reuse wavelength. In this article, the Optisystem software simulation is used as a platform to design, test, and verify the method applied to the current work; the OADM is proposed based on the metro network to get distribution between nodes over a transmission link; OADM analysis was presented with four channels (193.1, 193.2, 193.3, and 193.4 THz) at total bandwidth of 1.6 Tb/s, none-return-to-zero (NRZ), and return to zero coding types. Experiment one shows that the average output power is −17.997 dBm, the average drop power is −17.997 dBm, and the average add power is −18.338 dBm, the average gain is −0.0429 dB, the average noise figure is 0 dB, the average power input signal is 10.679 dBm, the average of power output signal is 10.633 dBm, and the average output optical signal-to-noise ratio (OSNR) is 0 dB, However, the second experiment shows that the average output power is −24.238 dBm, the average drop power is −24.288 dBm, and the average add power is −24.753 dBm, the average gain is −0.0417 dB, the average noise figure is 0 dB, average power input signal is 7.691 dBm, average of power output signal is 7.677 dBm, and the average output OSNR 0 dB. The system supports four input channels, four add channels, four output channels, and four drop channels. The results are acceptable after three spans of Solitons fiber with 600 km length, 200 km for each span. Nonetheless, it is believed that it is well justified to adopt these schemes in the current optical network with a low cost for overall expenditure.


Energies ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7920
Author(s):  
Ana Larrañaga ◽  
Miguel A. Gómez ◽  
David Patiño ◽  
Jacobo Porteiro

Currently, the growing need for efficient refrigeration resources in the industrial sector has led to an increasing interest in finding technologies with a higher heat removal potential and better cooling performance. Along these lines, two-phase liquid cooling appears to be a very interesting solution, with the CLTPT (closed-loop two-phase thermosyphon) being one of the leading alternatives. Most works in the scientific literature study loop thermosyphons that work in flow boiling conditions in steady state. The present paper analyzes the transient thermal behavior of a pool boiling CLTPT gravitational channel as a passive cooling system using NOVEC 649 as working fluid. The evaporator works with two submerged cylindrical heaters that represent different heat sources located in different positions. The initial transient behavior and consequent instabilities of a laboratory-scale facility were studied, followed by a stability analysis for various power inputs. Parameters such as temperature and pressure along the experimental setup were monitored, and the effects of internal pressure and room conditions were also tested. The results show some instabilities in the process to start the flow circulation and a relative stability and quick adaptation to changes when circulation is reached. The temperature in the evaporator chamber was highly homogeneous during the whole process; however, the temperature changes in the riser and the loop top were delayed with respect to the evaporator zone. The analysis shows several pressure and temperature raises before the vapor flux reaches the condenser. When the flow circulation is established, the system becomes highly stable and thermally homogeneous, decreasing the thermal resistance when increasing the power input. The stability analysis also showed that, when the system reaches the steady state, the changes in the power input produce a transient increase in the pressure and temperature of the fluid, followed by a quick decrease of the previous steady state values. The heat transfer analysis in the evaporator shows a higher heat flux on the upper heater caused by the buoyancy flow that rises from the lower heater. It was also observed that the lower heater reaches the CHF point with a lower heat flux.


Sign in / Sign up

Export Citation Format

Share Document