Tool Path Generation Using C-Space for 5-Axis Control Machining

1999 ◽  
Vol 121 (1) ◽  
pp. 144-149 ◽  
Author(s):  
K. Morishige ◽  
Y. Takeuchi ◽  
K. Kase

The paper deals with the method of tool path generation for 5-axis control machining using a ball end mill. 5-axis control machining has been used for aircraft parts as well as for complicated shapes such as mold and dies. However, most of the present CAM systems for 5-axis control machining have limited functions in terms of tool collision, workpiece shapes and machining methods. For that reason, in many cases the optimal cutter location (CL) data cannot be obtained or considerable time is consumed. To solve this problem, we applied a 3-dimensional configuration space (C-Space) and showed the relationship between all tool positions and postures and the existence of tool collision. The method of tool path generation devised in the study enables users to generate CL data reflecting their own machining strategy such as smooth change in tool posture and the state of machining without considering the gouging. The validity of this method was experimentally confirmed by successfully milling an impeller without tool collision occurring.

2010 ◽  
Vol 447-448 ◽  
pp. 292-296
Author(s):  
Takuya Masuda ◽  
Koichi Morishige

In recent years, five-axis controlled machine tool attracts attention from the increase in demand for improvement of productivity. Five-axis controlled machine tool which is added two axes for rotating and tilting to three translational axes, and can give arbitrary tool attitudes for a workpiece.


2011 ◽  
Vol 215 ◽  
pp. 176-181
Author(s):  
Li Min ◽  
Ke Hua Zhang

A new tool path generation method based on cutter shaft tilt method was proposed for free-form surface machining by using Ball-end Cutter. Firstly, it introduces the processing quality problems caused by traditional ball-end mill processing. Then cutter shaft tilt was proposed to avoid the above questions. Analyzing the different machining efficiency at the different angle, and then cutter shaft tilt compensation method which based on above method could avoid that problem was proposed. After the paths calculation to a real surface and simulation, the result shows that, comparing to traditional machining method, the new method reduced efficiently phenomenon of extruding and scratching surface. It meets five-axis processing accuracy requirements.


2012 ◽  
Vol 516 ◽  
pp. 176-180
Author(s):  
Ryo Nishiyama ◽  
Keiichi Nakamoto ◽  
Tohru Ishida ◽  
Yoshimi Takeuchi

This study deals with 5-axis control tool path generation to create microshapes dexterously and efficiently, while maintaining quality. Concerning 5-axis control machining, the use of ball end mills is generally employed. However, this method needs a lot of time to obtain high quality surface. To solve this problem, a side cutting edge of the ball end mill is positively utilized with its parallel to the ruled surface. Therefore, a new CAM system is developed to detect the surface to be machined with the side cutting edge, and to generate collision-free tool paths between the tool and the work piece. The effectiveness of the developed CAM system is experimentally confirmed by creating a tiny Möbius ring.


2006 ◽  
Vol 315-316 ◽  
pp. 180-184
Author(s):  
L. Xie ◽  
X.Y. Ruan ◽  
M. Li ◽  
Q.J. Wu

A algorithm of interference free tool path generation for 5-axis NC machining with flat end cutter is presented. The approach includes: To obtain cutter location points from cutter contact points; interference pretreatment by convex box of NURBS surfaces and reducing check area; interference detection and tool-position correction based on mesh model while the interference problem is substituted with the relationship between tool and triangles. The algorithm is speed and reliable.


2012 ◽  
Vol 78 (793) ◽  
pp. 3305-3316 ◽  
Author(s):  
Noriyuki NATSUME ◽  
Keiichi NAKAMOTO ◽  
Tohru ISHIDA ◽  
Yoshimi TAKEUCHI

Sign in / Sign up

Export Citation Format

Share Document