Boundary Layer Development in Axial Compressors and Turbines: Part 3 of 4— LP Turbines

1997 ◽  
Vol 119 (2) ◽  
pp. 225-237 ◽  
Author(s):  
D. E. Halstead ◽  
D. C. Wisler ◽  
T. H. Okiishi ◽  
G. J. Walker ◽  
H. P. Hodson ◽  
...  

This is Part Three of a four-part paper. It begins with Section 11.0 and continues to describe the comprehensive experiments and computational analyses that have led to a detailed picture of boundary layer development on airfoil surfaces in multistage turbomachinery. In this part, we present the experimental evidence that we used to construct the composite picture for LP turbines that was given in the discussion in Section 5.0 of Part 1. We present and interpret the data from the surface hot-film gages and the boundary layer surveys for the baseline operating condition. We then show how this picture changes with variations in Reynolds number, airfoil loading, and nozzle–nozzle clocking.

Author(s):  
David E. Halstead ◽  
David C. Wisler ◽  
Theodore H. Okiishi ◽  
Gregory J. Walker ◽  
Howard P. Hodson ◽  
...  

This is Part Three of a four-part paper. It begins with Section 11.0 and continues to describe the comprehensive experiments and computational analyses that have led to a detailed picture of boundary layer development on airfoil surfaces in multistage turbomachinery. In this part, we present the experimental evidence that we used to construct the composite picture for LP turbines that was given in the discussion in Section 5.0 of Part 1. We present and interpret the data from the surface hot-film gauges and the boundary layer surveys for the baseline operating condition. We then show how this picture changes with variations in Reynolds number, airfoil loading and nozzle-nozzle clocking.


Author(s):  
David E. Halstead ◽  
David C. Wisler ◽  
Theodore H. Okiishi ◽  
Gregory J. Walker ◽  
Howard P. Hodson ◽  
...  

This is Part Two of a four-part paper. It begins with Section 6.0 and continues to describe the comprehensive experiments and computational analyses that have led to a detailed picture of boundary layer development on airfoil surfaces in multistage turbomachinery. In this part, we present the experimental evidence used to construct the composite picture for compressors given in the discussion in Section 5.0 of Part 1. We show the data from the surface hot-film gauges and the boundary layer surveys, give a thorough interpretation for the baseline operating condition and then show how this picture changes with variations in Reynolds number, airfoil loading, frequency of occurrence of wakes and wake turbulence intensity. Detailed flow features are described using raw time traces. The use of rods to simulate airfoil wakes is also evaluated.


1997 ◽  
Vol 119 (3) ◽  
pp. 426-444 ◽  
Author(s):  
D. E. Halstead ◽  
D. C. Wisler ◽  
T. H. Okiishi ◽  
G. J. Walker ◽  
H. P. Hodson ◽  
...  

This is Part Two of a four-part paper. It begins with Section 6.0 and continues to describe the comprehensive experiments and computational analyses that have led to a detailed picture of boundary layer development on airfoil surfaces in multistage turbomachinery. In this part, we present the experimental evidence used to construct the composite picture for compressors given in the discussion in Section 5.0 of Part 1. We show the data from the surface hot-film gages and the boundary layer surveys, give a thorough interpretation for the baseline operating condition, and then show how this picture changes with variations in Reynolds number, airfoil loading, frequency of occurrence of wakes and wake turbulence intensity. Detailed flow features are described using raw time traces. The use of rods to simulate airfoil wakes is also evaluated.


Author(s):  
David E. Halstead ◽  
David C. Wisler ◽  
Theodore H. Okiishi ◽  
Gregory J. Walker ◽  
Howard P. Hodson ◽  
...  

This is Part Four of a four-part paper. It begins with Section 16.0 and concludes the description of the comprehensive experiments and computational analyses that have led to a detailed picture of boundary layer development on airfoil surfaces in multistage turbomachinery. In this part the computational predictions made using several modem boundary layer codes are presented. Both steady codes and an unsteady code were evaluated. The results are compared with time-averaged and unsteady integral parameters measured for the boundary layers. Assessments are made to provide guidance in using the predictive codes to locate transition and predict loss. Conclusions from the entire work are then presented.


1997 ◽  
Vol 119 (1) ◽  
pp. 128-139 ◽  
Author(s):  
D. E. Halstead ◽  
D. C. Wisler ◽  
T. H. Okiishi ◽  
G. J. Walker ◽  
H. P. Hodson ◽  
...  

This is Part Four of a four-part paper. It begins with Section 16.0 and concludes the description of the comprehensive experiments and computational analyses that have led to a detailed picture of boundary layer development on airfoil surfaces in multistage turbomachinery. In this part, the computational predictions made using several modern boundary layer codes are presented. Both steady codes and an unsteady code were evaluated. The results are compared with time-averaged and unsteady integral parameters measured for the boundary layers. Assessments are made to provide guidance in using the predictive codes to locate transition and predict loss. Conclusions from the computational analyses are then presented.


1997 ◽  
Vol 119 (4) ◽  
pp. 794-801 ◽  
Author(s):  
J. Luo ◽  
B. Lakshminarayana

The boundary layer development and convective heat transfer on transonic turbine nozzle vanes are investigated using a compressible Navier–Stokes code with three low-Reynolds-number k–ε models. The mean-flow and turbulence transport equations are integrated by a four-stage Runge–Kutta scheme. Numerical predictions are compared with the experimental data acquired at Allison Engine Company. An assessment of the performance of various turbulence models is carried out. The two modes of transition, bypass transition and separation-induced transition, are studied comparatively. Effects of blade surface pressure gradients, free-stream turbulence level, and Reynolds number on the blade boundary layer development, particularly transition onset, are examined. Predictions from a parabolic boundary layer code are included for comparison with those from the elliptic Navier–Stokes code. The present study indicates that the turbine external heat transfer, under real engine conditions, can be predicted well by the Navier–Stokes procedure with the low-Reynolds-number k–ε models employed.


1998 ◽  
Vol 120 (1) ◽  
pp. 28-35 ◽  
Author(s):  
V. Schulte ◽  
H. P. Hodson

The development of the unsteady suction side boundary layer of a highly loaded LP turbine blade has been investigated in a rectilinear cascade experiment. Upstream rotor wakes were simulated with a moving-bar wake generator. A variety of cases with different wake-passing frequencies, different wake strength, and different Reynolds numbers were tested. Boundary layer surveys have been obtained with a single hotwire probe. Wall shear stress has been investigated with surface-mounted hot-film gages. Losses have been measured. The suction surface boundary layer development of a modern highly loaded LP turbine blade is shown to be dominated by effects associated with unsteady wake-passing. Whereas without wakes the boundary layer features a large separation bubble at a typical cruise Reynolds number, the bubble was largely suppressed if subjected to unsteady wake-passing at a typical frequency and wake strength. Transitional patches and becalmed regions, induced by the wake, dominated the boundary layer development. The becalmed regions inhibited transition and separation and are shown to reduce the loss of the wake-affected boundary layer. An optimum wake-passing frequency exists at cruise Reynolds numbers. For a selected wake-passing frequency and wake strength, the profile loss is almost independent of Reynolds number. This demonstrates a potential to design highly loaded LP turbine profiles without suffering large losses at low Reynolds numbers.


Author(s):  
Wenhua Duan ◽  
Jian Liu ◽  
Weiyang Qiao

Abstract A numerical analysis of the effect of Mach number on the boundary layer development and aerodynamic performance of a high-lift, after loaded low pressure turbine blade is presented in this paper. The turbine blade is designed for the GTF engine and works in a low Reynolds number, high Mach number environment. Three different isentropic exit Mach numbers (0.14, 0.87 and 1.17) are simulated by large eddy simulation method, while the Reynolds number based on the axial chord length of the blade and the exit flow velocity is kept the same (1 × 105). The condition Mais,2 = 0.14 represents the lowspeeed wind tunnel environment which is usually used in the low pressure turbine investigation. The condition Mais,2 = 0.87 represents the design point of the turbine blade. The condition Mais,2 = 1.17 represents the severe environment when the shock wave shows up. A comparison of the boundary layer development is made and the total pressure loss results from the boundary layer is discussed.


1997 ◽  
Vol 119 (1) ◽  
pp. 114-127 ◽  
Author(s):  
D. E. Halstead ◽  
D. C. Wisler ◽  
T. H. Okiishi ◽  
G. J. Walker ◽  
H. P. Hodson ◽  
...  

Comprehensive experiments and computational analyses were conducted to understand boundary layer development on airfoil surfaces in multistage, axial-flow compressors and LP turbines. The tests were run over a broad range of Reynolds numbers and loading levels in large, low-speed research facilities which simulate the relevant aerodynamic features of modern engine components. Measurements of boundary layer characteristics were obtained by using arrays of densely packed, hot-film gauges mounted on airfoil surfaces and by making boundary layer surveys with hot wire probes. Computational predictions were made using both steady flow codes and an unsteady flow code. This is the first time that time-resolved boundary layer measurements and detailed comparisons of measured data with predictions of boundary layer codes have been reported for multistage compressor and turbine blading. Part 1 of this paper summarizes all of our experimental findings by using sketches to show how boundary layers develop on compressor and turbine blading. Parts 2 and 3 present the detailed experimental results for the compressor and turbine, respectively. Part 4 presents computational analyses and discusses comparisons with experimental data. Readers not interested in experimental detail can go directly from Part 1 to Part 4. For both compressor and turbine blading, the experimental results show large extents of laminar and transitional flow on the suction surface of embedded stages, with the boundary layer generally developing along two distinct but coupled paths. One path lies approximately under the wake trajectory while the other lies between wakes. Along both paths the boundary layer clearly goes from laminar to transitional to turbulent. The wake path and the non-wake path are coupled by a calmed region, which, being generated by turbulent spots produced in the wake path, is effective in suppressing flow separation and delaying transition in the non-wake path. The location and strength of the various regions within the paths, such as wake-induced transitional and turbulent strips, vary with Reynolds number, loading level, and turbulence intensity. On the pressure surface, transition takes place near the leading edge for the blading tested. For both surfaces, bypass transition and separated-flow transition were observed. Classical Tollmien–Schlichting transition did not play a significant role. Comparisons of embedded and first-stage results were also made to assess the relevance of applying single-stage and cascade studies to the multistage environment. Although doing well under certain conditions, the codes in general could not adequately predict the onset and extent of transition in regions affected by calming. However, assessments are made to guide designers in using current predictive schemes to compute boundary layer features and obtain reasonable loss predictions.


Sign in / Sign up

Export Citation Format

Share Document