Boundary Layer Development in Axial Compressors and Turbines: Part 4 of 4—Computations and Analyses

1997 ◽  
Vol 119 (1) ◽  
pp. 128-139 ◽  
Author(s):  
D. E. Halstead ◽  
D. C. Wisler ◽  
T. H. Okiishi ◽  
G. J. Walker ◽  
H. P. Hodson ◽  
...  

This is Part Four of a four-part paper. It begins with Section 16.0 and concludes the description of the comprehensive experiments and computational analyses that have led to a detailed picture of boundary layer development on airfoil surfaces in multistage turbomachinery. In this part, the computational predictions made using several modern boundary layer codes are presented. Both steady codes and an unsteady code were evaluated. The results are compared with time-averaged and unsteady integral parameters measured for the boundary layers. Assessments are made to provide guidance in using the predictive codes to locate transition and predict loss. Conclusions from the computational analyses are then presented.

Author(s):  
David E. Halstead ◽  
David C. Wisler ◽  
Theodore H. Okiishi ◽  
Gregory J. Walker ◽  
Howard P. Hodson ◽  
...  

This is Part Four of a four-part paper. It begins with Section 16.0 and concludes the description of the comprehensive experiments and computational analyses that have led to a detailed picture of boundary layer development on airfoil surfaces in multistage turbomachinery. In this part the computational predictions made using several modem boundary layer codes are presented. Both steady codes and an unsteady code were evaluated. The results are compared with time-averaged and unsteady integral parameters measured for the boundary layers. Assessments are made to provide guidance in using the predictive codes to locate transition and predict loss. Conclusions from the entire work are then presented.


Author(s):  
David E. Halstead ◽  
David C. Wisler ◽  
Theodore H. Okiishi ◽  
Gregory J. Walker ◽  
Howard P. Hodson ◽  
...  

This is Part Two of a four-part paper. It begins with Section 6.0 and continues to describe the comprehensive experiments and computational analyses that have led to a detailed picture of boundary layer development on airfoil surfaces in multistage turbomachinery. In this part, we present the experimental evidence used to construct the composite picture for compressors given in the discussion in Section 5.0 of Part 1. We show the data from the surface hot-film gauges and the boundary layer surveys, give a thorough interpretation for the baseline operating condition and then show how this picture changes with variations in Reynolds number, airfoil loading, frequency of occurrence of wakes and wake turbulence intensity. Detailed flow features are described using raw time traces. The use of rods to simulate airfoil wakes is also evaluated.


1997 ◽  
Vol 119 (3) ◽  
pp. 426-444 ◽  
Author(s):  
D. E. Halstead ◽  
D. C. Wisler ◽  
T. H. Okiishi ◽  
G. J. Walker ◽  
H. P. Hodson ◽  
...  

This is Part Two of a four-part paper. It begins with Section 6.0 and continues to describe the comprehensive experiments and computational analyses that have led to a detailed picture of boundary layer development on airfoil surfaces in multistage turbomachinery. In this part, we present the experimental evidence used to construct the composite picture for compressors given in the discussion in Section 5.0 of Part 1. We show the data from the surface hot-film gages and the boundary layer surveys, give a thorough interpretation for the baseline operating condition, and then show how this picture changes with variations in Reynolds number, airfoil loading, frequency of occurrence of wakes and wake turbulence intensity. Detailed flow features are described using raw time traces. The use of rods to simulate airfoil wakes is also evaluated.


Author(s):  
David E. Halstead ◽  
David C. Wisler ◽  
Theodore H. Okiishi ◽  
Gregory J. Walker ◽  
Howard P. Hodson ◽  
...  

This is Part Three of a four-part paper. It begins with Section 11.0 and continues to describe the comprehensive experiments and computational analyses that have led to a detailed picture of boundary layer development on airfoil surfaces in multistage turbomachinery. In this part, we present the experimental evidence that we used to construct the composite picture for LP turbines that was given in the discussion in Section 5.0 of Part 1. We present and interpret the data from the surface hot-film gauges and the boundary layer surveys for the baseline operating condition. We then show how this picture changes with variations in Reynolds number, airfoil loading and nozzle-nozzle clocking.


1997 ◽  
Vol 119 (2) ◽  
pp. 225-237 ◽  
Author(s):  
D. E. Halstead ◽  
D. C. Wisler ◽  
T. H. Okiishi ◽  
G. J. Walker ◽  
H. P. Hodson ◽  
...  

This is Part Three of a four-part paper. It begins with Section 11.0 and continues to describe the comprehensive experiments and computational analyses that have led to a detailed picture of boundary layer development on airfoil surfaces in multistage turbomachinery. In this part, we present the experimental evidence that we used to construct the composite picture for LP turbines that was given in the discussion in Section 5.0 of Part 1. We present and interpret the data from the surface hot-film gages and the boundary layer surveys for the baseline operating condition. We then show how this picture changes with variations in Reynolds number, airfoil loading, and nozzle–nozzle clocking.


2021 ◽  
Author(s):  
Michael Hopfinger ◽  
Volker Gümmer

Abstract The development of viscous endwall flow is of major importance when considering highly-loaded compressor stages. Essentially, all losses occurring in a subsonic compressor are caused by viscous shear stresses building up boundary layers on individual aerofoils and endwall surfaces. These boundary layers cause significant aerodynamic blockage and cause a reduction in effective flow area, depending on the specifics of the stage design. The presented work describes the numerical investigation of blockage development in a 3.5-stage low-speed compressor with tandem stator vanes. The research is aimed at understanding the mechanism of blockage generation and growth in tandem vane rows and across the entire compressor. Therefore, the blockage generation is investigated as a function of the operating point, the rotational speed and the inlet boundary layer thickness.


1966 ◽  
Vol 8 (4) ◽  
pp. 426-436 ◽  
Author(s):  
A. D. Carmichael ◽  
G. N. Pustintsev

Methods of predicting the growth of turbulent boundary layers in conical diffusers using the kinetic-energy deficit equation were developed. Three different forms of auxiliary equations were used. Comparison between the measured and predicted results showed that there was fair agreement although there was a tendency to underestimate the predicted momentum thickness and over-estimate the predicted shape factor.


1983 ◽  
Vol 34 (2) ◽  
pp. 147-161 ◽  
Author(s):  
M.M.M. El Telbany ◽  
J. Niknejad ◽  
A.J. Reynolds

SummaryConsideration is given to the relationship H1 = f(H) linking the common shape factor H and the mass-flow shape parameter H1 which is used in entrainment models of boundary-layer development. A formula suggested by Green et al is found to be most nearly consistent with the measurements presented. However, a more exact prediction of H1 is obtained by introducing a factor involving the Reynolds number based on the local momentum thickness θ; thus H1 = f(H, Reθ). Predictions obtained by incorporating the appropriately modified entrainment equation into the well-known method of Green et al prove not to give an improved representation of the development of boundary layers studied experimentally by the authors and others. It is concluded that the modified formula for H1 is primarily useful in giving an improved specification of the overall boundary layer thickness δ = θ(H1 + H), and hence of other features of the developing profile.


1997 ◽  
Vol 119 (1) ◽  
pp. 114-127 ◽  
Author(s):  
D. E. Halstead ◽  
D. C. Wisler ◽  
T. H. Okiishi ◽  
G. J. Walker ◽  
H. P. Hodson ◽  
...  

Comprehensive experiments and computational analyses were conducted to understand boundary layer development on airfoil surfaces in multistage, axial-flow compressors and LP turbines. The tests were run over a broad range of Reynolds numbers and loading levels in large, low-speed research facilities which simulate the relevant aerodynamic features of modern engine components. Measurements of boundary layer characteristics were obtained by using arrays of densely packed, hot-film gauges mounted on airfoil surfaces and by making boundary layer surveys with hot wire probes. Computational predictions were made using both steady flow codes and an unsteady flow code. This is the first time that time-resolved boundary layer measurements and detailed comparisons of measured data with predictions of boundary layer codes have been reported for multistage compressor and turbine blading. Part 1 of this paper summarizes all of our experimental findings by using sketches to show how boundary layers develop on compressor and turbine blading. Parts 2 and 3 present the detailed experimental results for the compressor and turbine, respectively. Part 4 presents computational analyses and discusses comparisons with experimental data. Readers not interested in experimental detail can go directly from Part 1 to Part 4. For both compressor and turbine blading, the experimental results show large extents of laminar and transitional flow on the suction surface of embedded stages, with the boundary layer generally developing along two distinct but coupled paths. One path lies approximately under the wake trajectory while the other lies between wakes. Along both paths the boundary layer clearly goes from laminar to transitional to turbulent. The wake path and the non-wake path are coupled by a calmed region, which, being generated by turbulent spots produced in the wake path, is effective in suppressing flow separation and delaying transition in the non-wake path. The location and strength of the various regions within the paths, such as wake-induced transitional and turbulent strips, vary with Reynolds number, loading level, and turbulence intensity. On the pressure surface, transition takes place near the leading edge for the blading tested. For both surfaces, bypass transition and separated-flow transition were observed. Classical Tollmien–Schlichting transition did not play a significant role. Comparisons of embedded and first-stage results were also made to assess the relevance of applying single-stage and cascade studies to the multistage environment. Although doing well under certain conditions, the codes in general could not adequately predict the onset and extent of transition in regions affected by calming. However, assessments are made to guide designers in using current predictive schemes to compute boundary layer features and obtain reasonable loss predictions.


1967 ◽  
Vol 89 (3) ◽  
pp. 655-663 ◽  
Author(s):  
H. L. Moses ◽  
J. R. Chappell

An investigation of turbulent boundary-layer separation in internal flow is presented, with experimental results for a variable angle, two-dimensional diffuser. A simple analytical model is adopted, which consists of wall boundary layers and a one-dimensional, inviscid core. By calculating the pressure simultaneously with the boundary-layer development, the approximate method is extended to include the separated region. With a limited amount of separated flow, the calculated pressure recovery agrees reasonably well with the experiments and gives a fair indication of maximum diffusion performance. The limitation of the model, as well as the possibility of singularities and downstream instability, are discussed in relation to the general problem of boundary-layer separation.


Sign in / Sign up

Export Citation Format

Share Document