Comparison of Particle Image Velocimetry and Phase Contrast MRI in a Patient-Specific Extracardiac Total Cavopulmonary Connection

2008 ◽  
Vol 130 (4) ◽  
Author(s):  
Hiroumi D. Kitajima ◽  
Kartik S. Sundareswaran ◽  
Thomas Z. Teisseyre ◽  
Garrett W. Astary ◽  
W. James Parks ◽  
...  

Particle image velocimetry (PIV) and phase contrast magnetic resonance imaging (PC-MRI) have not been compared in complex biofluid environments. Such analysis is particularly useful to investigate flow structures in the correction of single ventricle congenital heart defects, where fluid dynamic efficiency is essential. A stereolithographic replica of an extracardiac total cavopulmonary connection (TCPC) is studied using PIV and PC-MRI in a steady flow loop. Volumetric two-component PIV is compared to volumetric three-component PC-MRI at various flow conditions. Similar flow structures are observed in both PIV and PC-MRI, where smooth flow dominates the extracardiac TCPC, and superior vena cava flow is preferential to the right pulmonary artery, while inferior vena cava flow is preferential to the left pulmonary artery. Where three-component velocity is available in PC-MRI studies, some helical flow in the extracardiac TCPC is observed. Vessel cross sections provide an effective means of validation for both experiments, and velocity magnitudes are of the same order. The results highlight similarities to validate flow in a complex patient-specific extracardiac TCPC. Additional information obtained by velocity in three components further describes the complexity of the flow in anatomic structures.

2006 ◽  
Vol 39 ◽  
pp. S304
Author(s):  
H.D. Kitajima ◽  
K.S. Sundareswaran ◽  
T.Z. Teisseyre ◽  
K. Pekkan ◽  
D. de Zelicourt ◽  
...  

2000 ◽  
Vol 24 (12) ◽  
pp. 946-952 ◽  
Author(s):  
M. Grigioni ◽  
A. Amodeo ◽  
C. Daniele ◽  
G. D'avenio ◽  
R. Formigari ◽  
...  

2006 ◽  
Author(s):  
Renqiang Xiong ◽  
J. N. Chung

Flow structures and pressure drops were investigated in rectangular serpentine micro-channels with miter bends which had hydraulic diameters of 0.209mm, 0.395mm and 0.549mm respectively. To evaluate the bend effect, the additional pressure drop due to the miter bend must be obtained. Three groups of micro-channels were fabricated to remove the inlet and outlet losses. A validated micro-particle image velocimetry (μPIV) system was used to achieve the flow structure in a serpentine micro-channel with hydraulic diameter of 0.173mm. The experimental results show the vortices around the outer and inner walls of the bend do not form when Re<100. Those vortices appear and continue to develop with the Re number when Re> 100-300, and the shape and size of the vortices almost remain constant when Re>1000. The bend loss coefficient Kb was observed to be related with the Re number when Re<100, with the Re number and channel size when Re>100. It almost keeps constant and changes in the range of ± 10% When Re is larger than some value in 1300-1500. And a size effect on Kb was also observed.


Author(s):  
Jean-Pierre Rabbah ◽  
Neelakantan Saikrishnan ◽  
Ajit P. Yoganathan

Patient specific mitral valve computational models are being actively developed to facilitate surgical planning. These numerical models increasingly employ more realistic geometries, kinematics, and mechanical properties, which in turn requires rigorous experimental validation [1]. However, to date, native mitral flow dynamics have not been accurately and comprehensively characterized. In this study, we used Stereoscopic Particle Image Velocimetry (SPIV) to characterize the ventricular flow field proximal to a native mitral valve in a pulsatile experimental flow loop.


Sign in / Sign up

Export Citation Format

Share Document