A Time Integration Algorithm for Structural Dynamics With Improved Numerical Dissipation: The Generalized-α Method

1993 ◽  
Vol 60 (2) ◽  
pp. 371-375 ◽  
Author(s):  
J. Chung ◽  
G. M. Hulbert

A new family of time integration algorithms is presented for solving structural dynamics problems. The new method, denoted as the generalized-α method, possesses numerical dissipation that can be controlled by the user. In particular, it is shown that the generalized-α method achieves high-frequency dissipation while minimizing unwanted low-frequency dissipation. Comparisons are given of the generalized-α method with other numerically dissipative time integration methods; these results highlight the improved performance of the new algorithm. The new algorithm can be easily implemented into programs that already include the Newmark and Hilber-Hughes-Taylor-α time integration methods.

Author(s):  
Yi Ji ◽  
Yufeng Xing

This paper develops a family of optimized [Formula: see text]-sub-step time integration methods for structural dynamics, in which the generalized trapezoidal rule is used in the first [Formula: see text] sub-steps, and the last sub-step employs [Formula: see text]-point backward difference formula. The proposed methods can achieve second-order accuracy and unconditional stability, and their degree of numerical dissipation can range from zero to one. Also, the proposed methods can achieve the identical effective stiffness matrices for all sub-steps, reducing computational costs in the analysis of linear systems. Using the spectral analysis, optimized algorithmic parameters are presented, ensuring that the proposed methods can accurately calculate different types of dynamic problems such as wave propagation, stiff and nonlinear systems. Besides, with the increase in the number of sub-steps, the accuracy of the proposed methods can be enhanced without extra workload compared with single-step methods. Numerical experiments show that the proposed methods perform better in different dynamic systems.


Author(s):  
Takeshi Fujikawa ◽  
Etsujiro Imanishi

Abstract A method of time integration algorithm is presented for solving stiff vibration and motion problems. It is absolutely stable, numerically dissipative, and much accurate than other dissipative time integration methods. It achieves high-frequency dissipation, while minimizing unwanted low-frequency dissipation. In this method change of acceleration during time step is expressed as quadratic function including some parameters, whose appropriate values are determined through numerical investigation. Two calculation examples are demonstrated to show the usefulness of this method.


2020 ◽  
Vol 102 (3) ◽  
pp. 1939-1962
Author(s):  
Huimin Zhang ◽  
Runsen Zhang ◽  
Yufeng Xing ◽  
Pierangelo Masarati

AbstractA family of n-sub-step composite time integration methods, which employs the trapezoidal rule in the first $$n-1$$ n - 1 sub-steps and a general formula in the last one, is discussed in this paper. A universal approach to optimize the parameters is provided for any cases of $$n\ge 2$$ n ≥ 2 , and two optimal sub-families of the method are given for different purposes. From linear analysis, the first sub-family can achieve nth-order accuracy and unconditional stability with controllable algorithmic dissipation, so it is recommended for high-accuracy purposes. The second sub-family has second-order accuracy, unconditional stability with controllable algorithmic dissipation, and it is designed for heuristic energy-conserving purposes, by preserving as much low-frequency content as possible. Finally, some illustrative examples are solved to check the performance in linear and nonlinear systems.


Sign in / Sign up

Export Citation Format

Share Document