unconditional stability
Recently Published Documents


TOTAL DOCUMENTS

155
(FIVE YEARS 28)

H-INDEX

19
(FIVE YEARS 3)

2021 ◽  
Vol 11 (24) ◽  
pp. 12109
Author(s):  
Veerarajan Selvakumar ◽  
Shuenn-Yih Chang

Although many families of integration methods have been successfully developed with desired numerical properties, such as second order accuracy, unconditional stability and numerical dissipation, they are generally implicit methods. Thus, an iterative procedure is often involved for each time step in conducting time integration. Many computational efforts will be consumed by implicit methods when compared to explicit methods. In general, the structure-dependent integration methods (SDIMs) are very computationally efficient for solving a general structural dynamic problem. A new family of SDIM is proposed. It exhibits the desired numerical properties of second order accuracy, unconditional stability, explicit formulation and no overshoot. The numerical properties are controlled by a single free parameter. The proposed family method generally has no adverse disadvantage of unusual overshoot in high frequency transient responses that have been found in the currently available implicit integration methods, such as the WBZ-α method, HHT-α method and generalized-α method. Although this family method has unconditional stability for the linear elastic and stiffness softening systems, it becomes conditionally stable for stiffness hardening systems. This can be controlled by a stability amplification factor and its unconditional stability is successfully extended to stiffness hardening systems. The computational efficiency of the proposed method proves that engineers can do the accurate nonlinear analysis very quickly.


2021 ◽  
Vol 81 (12) ◽  
Author(s):  
Nicolás Bernal ◽  
Diego Restrepo

AbstractWe perform a systematic analysis of Standard Model extensions with an additional anomaly-free gauge U(1) symmetry, to generate tree-level Dirac neutrino masses. An anomaly-free symmetry demands nontrivial conditions on the charges of the unavoidable new states. An intensive scan was performed, looking for solutions generating neutrino masses by the type-I and type-II tree-level Dirac seesaw mechanism, via operators with dimension 5 and 6, that correspond to active or dark symmetries. Special attention was paid to the cases featuring no extra massless chiral fermions or multicomponent dark matter with unconditional stability.


2021 ◽  
Vol 63 ◽  
pp. 23-38
Author(s):  
David Galloway ◽  
David J Ivers

DuFort–Frankel averaging is a tactic to stabilize Richardson’s unstable three-level leapfrog timestepping scheme. By including the next time level in the right-hand-side evaluation, it is implicit, but it can be rearranged to give an explicit updating formula, thus apparently giving the best of both worlds. Textbooks prove unconditional stability for the heat equation, and extensive use on a variety of advection–diffusion equations has produced many useful results. Nonetheless, for some problems the scheme can fail in an interesting and surprising way, leading to instability at very long times. An analysis for a simple problem involving a pair of evolution equations that describe the spread of a rabies epidemic gives insight into how this occurs. An even simpler modified diffusion equation suffers from the same instability. Finally, the rabies problem is revisited and a stable method is found for a restricted range of parameter values, although no prescriptive recipe is known which selects this particular choice.   doi:10.1017/S1446181121000043


2021 ◽  
pp. 1-16
Author(s):  
DAVID GALLOWAY ◽  
DAVID IVERS

Abstract DuFort–Frankel averaging is a tactic to stabilize Richardson’s unstable three-level leapfrog timestepping scheme. By including the next time level in the right-hand-side evaluation, it is implicit, but it can be rearranged to give an explicit updating formula, thus apparently giving the best of both worlds. Textbooks prove unconditional stability for the heat equation, and extensive use on a variety of advection–diffusion equations has produced many useful results. Nonetheless, for some problems the scheme can fail in an interesting and surprising way, leading to instability at very long times. An analysis for a simple problem involving a pair of evolution equations that describe the spread of a rabies epidemic gives insight into how this occurs. An even simpler modified diffusion equation suffers from the same instability. Finally, the rabies problem is revisited and a stable method is found for a restricted range of parameter values, although no prescriptive recipe is known which selects this particular choice.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Liqiang Niu ◽  
Yongjun Xie ◽  
Jie Gao ◽  
Peiyu Wu ◽  
Haolin Jiang

By incorporating the higher-order concept with the perfectly matched later (PML) scheme, unconditionally stable approximate Crank–Nicolson algorithm is proposed for plasma simulation in open region problems. More precisely, the proposed implementation is based on the CN Direct-Splitting (CNDS) procedure for the finite-difference time-domain (FDTD) unmagnetized plasma simulation. The unmagnetized plasma can be regarded as frequency-dependent media which can be calculated by the piecewise linear recursive convolution (PLRC) method. The proposed implementation shows the advantages of higher-order concept, CNDS procedure, and PLRC method in terms of improved absorbing performance, enhanced computational efficiency, and outstanding calculation accuracy. Numerical examples are introduced to indicate the effectiveness and efficiency. It can be concluded from results that the proposed scheme shows considerable efficiency, accuracy, absorption, and unconditional stability.


Sign in / Sign up

Export Citation Format

Share Document