A Precise and Stiffly Stable Time Integration Method for Vibration Equations

Author(s):  
Takeshi Fujikawa ◽  
Etsujiro Imanishi

Abstract A method of time integration algorithm is presented for solving stiff vibration and motion problems. It is absolutely stable, numerically dissipative, and much accurate than other dissipative time integration methods. It achieves high-frequency dissipation, while minimizing unwanted low-frequency dissipation. In this method change of acceleration during time step is expressed as quadratic function including some parameters, whose appropriate values are determined through numerical investigation. Two calculation examples are demonstrated to show the usefulness of this method.

Author(s):  
Shuenn-Yih Chang ◽  
Chiu-Li Huang

A novel family of structure-dependent integration method is proposed for time integration. This family method can have the possibility of unconditional stability, second-order accuracy and the explicitness of each time step. Since it can integrate the most important advantage of an implicit method, unconditional stability, and that of an explicit method, the explicitness of each time step, a lot of computational efforts can be saved in solving an inertial type problem, where the total response is dominated by low frequency modes and high frequency responses are of no interest.


2021 ◽  
Vol 11 (4) ◽  
pp. 1932
Author(s):  
Weixuan Wang ◽  
Qinyan Xing ◽  
Qinghao Yang

Based on the newly proposed generalized Galerkin weak form (GGW) method, a two-step time integration method with controllable numerical dissipation is presented. In the first sub-step, the GGW method is used, and in the second sub-step, a new parameter is introduced by using the idea of a trapezoidal integral. According to the numerical analysis, it can be concluded that this method is unconditionally stable and its numerical damping is controllable with the change in introduced parameters. Compared with the GGW method, this two-step scheme avoids the fast numerical dissipation in a low-frequency range. To highlight the performance of the proposed method, some numerical problems are presented and illustrated which show that this method possesses superior accuracy, stability and efficiency compared with conventional trapezoidal rule, the Wilson method, and the Bathe method. High accuracy in a low-frequency range and controllable numerical dissipation in a high-frequency range are both the merits of the method.


2021 ◽  
Vol 2090 (1) ◽  
pp. 012145
Author(s):  
Ryuma Honda ◽  
Hiroki Suzuki ◽  
Shinsuke Mochizuki

Abstract This study presents the impact of the difference between the implicit and explicit time integration methods on a steady turbulent flow field. In contrast to the explicit time integration method, the implicit time integration method may produce significant kinetic energy conservation error because the widely used spatial difference method for discretizing the governing equations is explicit with respect to time. In this study, the second-order Crank-Nicolson method is used as the implicit time integration method, and the fourth-order Runge-Kutta, second-order Runge-Kutta and second-order Adams-Bashforth methods are used as explicit time integration methods. In the present study, both isotropic and anisotropic steady turbulent fields are analyzed with two values of the Reynolds number. The turbulent kinetic energy in the steady turbulent field is hardly affected by the kinetic energy conservation error. The rms values of static pressure fluctuation are significantly sensitive to the kinetic energy conservation error. These results are examined by varying the time increment value. These results are also discussed by visualizing the large scale turbulent vortex structure.


2019 ◽  
Vol 26 (3-4) ◽  
pp. 161-174
Author(s):  
Taufeeq Ur Rehman Abbasi ◽  
Hui Zheng

Engineering systems for different levels of energy dissipation use internal variable models, which may lead to tremendous problems in accurate analysis. This article aims to provide an alternative direct integration method for the analysis of systems involving an anelastic displacement field model. A new state-space formulation built on an augmented set of anelastic variables for asymmetric systems is developed. Then, a precise time integration method based on state-space matrix formulation is proposed by introducing a Legendre–Gauss quadrature. The new integration method in terms of numerical stability and its implementation is discussed. The effect of sensitivity of the selection of the time-step and computational time on the performance of the new method is investigated by using a multi-degree-of-freedom system. The performance of the new method is also evaluated in terms of both computational accuracy and efficiency at higher degrees of freedom by using a continuum system. It is demonstrated that the computational accuracy and efficiency of the new method on large-scale problems are higher than that of the direct integration linear displacement–velocity method.


1993 ◽  
Vol 60 (2) ◽  
pp. 371-375 ◽  
Author(s):  
J. Chung ◽  
G. M. Hulbert

A new family of time integration algorithms is presented for solving structural dynamics problems. The new method, denoted as the generalized-α method, possesses numerical dissipation that can be controlled by the user. In particular, it is shown that the generalized-α method achieves high-frequency dissipation while minimizing unwanted low-frequency dissipation. Comparisons are given of the generalized-α method with other numerically dissipative time integration methods; these results highlight the improved performance of the new algorithm. The new algorithm can be easily implemented into programs that already include the Newmark and Hilber-Hughes-Taylor-α time integration methods.


2012 ◽  
Vol 203 ◽  
pp. 432-437
Author(s):  
Jun Jie Zhao ◽  
Yan Zhi Yang

The global integration time step of multi-scale model is subject to local detailed model, resulting in lower computational efficiency. Mixed time integration method uses different integration time-step in different scale model, it can effectively avoid the above problem. Rest on a large-scale water tunnel under construction, in order to achieve the synchronization of the global and the local simulation, the paper establishes multi-scale finite element model of the tunnel, and calculate it by mixed time integration method. The final calculation and analysis show that the algorithm can guarantee the computational accuracy of multi-scale numerical simulation, and can effectively improve the computational efficiency, it can also provide references for related tunnel project.


1973 ◽  
Vol 40 (2) ◽  
pp. 417-421 ◽  
Author(s):  
R. D. Krieg

Methods of numerical time integration of the equation M¯q¨ + K¯q = f are examined in this paper. A particular class of explicit time integration methods is defined and this class is searched for an unconditionally stable method. The class is found to contain no such method and, furthermore, is found to contain no method with a larger stable time step size than that characterized by the simple central difference time integration method.


Author(s):  
Jieyu Ding ◽  
Zhenkuan Pan

An adaptive time integration method is developed for the index-3 differential-algebraic equations (DAEs) of multibody systems to improve the computational efficiency as well as the accuracy of the results. Based on the modified general-α method, the adaptive time integration is presented. At each discrete time interval, the time step size is changed through Richardson extrapolation with definable computation accuracy. A rotary rod slider system is used to validate the presented adaptive time integration. The accuracy and efficiency are determined by the expected order of the accuracy in Richardson extrapolation.


2012 ◽  
Vol 12 (06) ◽  
pp. 1250051 ◽  
Author(s):  
SHYH-RONG KUO ◽  
J. D. YAU ◽  
Y. B. YANG

An efficient time-integration algorithm for nonlinear dynamic analysis of structures is presented. By adopting the temporal discretization for time finite element approximation, very large time steps can be used by the algorithm. With an accuracy of fourth order, this technique requires only displacements and velocities to be made available at the start of the current time step for integration in state space. Using the weighted momentum principle, the problem of discontinuity caused by impulsive loads is resolved after time-integration of the applied load in external momentum. Since no knowledge is required of acceleration at the current time step, the errors caused by estimation of acceleration by previous finite-difference methods are circumvented. Moreover, an iterative procedure is included for each time step, involving the three phases of predictor, corrector, and error-checking. The effectiveness and robustness of the proposed algorithm in solving nonlinear dynamic problems is demonstrated in the numerical examples.


Sign in / Sign up

Export Citation Format

Share Document