Numerical Study of the Effects of Longitudinal Acceleration on Solid Rocket Motor Internal Ballistics

1992 ◽  
Vol 114 (3) ◽  
pp. 404-410 ◽  
Author(s):  
J. J. Gottlieb ◽  
D. R. Greatrix

The internal ballistics of a solid-propellant rocket motor subjected to both constant and oscillatory longitudinal accelerations are studied. The one-dimensional time-dependent equations of motion governing the unsteady two-phase core flow in the accelerating motor chamber and nozzle are solved numerically by using the random-choice method, along with pressure-dependent and crossflow-dependent burning-rate equations for propellant combustion. A constant forward acceleration produces negligible effects, whereas longitudinal motor vibrations near the natural frequency of waves criss-crossing the length of the motor chamber can produce large but bounded oscillatory motor-chamber pressures.

2022 ◽  
Author(s):  
Griffin A. DiMaggio ◽  
Roy J. Hartfield ◽  
Joseph Majdalani ◽  
Vivek Ahuja

2021 ◽  
Vol 33 (10) ◽  
pp. 103613
Author(s):  
Griffin A. DiMaggio ◽  
Roy J. Hartfield ◽  
Joseph Majdalani ◽  
Vivek Ahuja

Author(s):  
Yumin Xiao ◽  
R. S. Amano ◽  
Timin Cai ◽  
Jiang Li ◽  
Guoqiang He

Abstract It has been a challenge to investigate how to trace particles in a solid rocket motor (SRM) using aluminized composite solid propellant and submerged nozzle. In using CFD simulations, the boundary conditions for the ejecting particles constrain their trajectories, hence these affect the two-phase flow calculations, and thus significantly affect the evaluation of the slag accumulation. The RTR (X-ray Real-time Radiography) technique is a new method to detect the particles in a firing SRM. A method was developed to simulate the particle ejection from the propellant surface. The moving trajectories of metal particles in a firing combustion chamber were measured by using the RTR high-speed motion analyzer. Numerical simulations with different propellant-surface boundary conditions were performed to calculate particle trajectories. Through this study an appropriate surface velocity condition on the propellant surface was discovered. The method developed here can be used for the future CRM research.


Sign in / Sign up

Export Citation Format

Share Document