Simulation of the Turbulent Flow Inside the Combustion Chamber of a Reciprocating Engine With a Finite Element Method

1994 ◽  
Vol 116 (2) ◽  
pp. 363-369 ◽  
Author(s):  
Y. Mao ◽  
M. Buffat ◽  
D. Jeandel

This paper presents numerical simulations of turbulent flows during the intake and the compression strokes of a model engine. The Favre average Navier-Stokes equations are solved with a k-ε turbulence model. The numerical procedure uses a time dependent semi-implicit scheme and a finite element method with a moving mesh (Buffat, 1991, Mao, 1990). Results of 2-D axisymmetrical calculations with and without inlet swirl are presented and compared to experimental data (Lance et al., 1991). The influence of different turbulence models and the numerical precision of the simulations are also discussed.

Author(s):  
Alexander Danilov ◽  
Alexander Lozovskiy ◽  
Maxim Olshanskii ◽  
Yuri Vassilevski

AbstractThe paper introduces a finite element method for the Navier-Stokes equations of incompressible viscous fluid in a time-dependent domain. The method is based on a quasi-Lagrangian formulation of the problem and handling the geometry in a time-explicit way. We prove that numerical solution satisfies a discrete analogue of the fundamental energy estimate. This stability estimate does not require a CFL time-step restriction. The method is further applied to simulation of a flow in a model of the left ventricle of a human heart, where the ventricle wall dynamics is reconstructed from a sequence of contrast enhanced Computed Tomography images.


Sign in / Sign up

Export Citation Format

Share Document