Laminar Natural Convection Heat Transfer From a Horizontal Circular Cylinder to Liquid Metals

1991 ◽  
Vol 113 (1) ◽  
pp. 91-96 ◽  
Author(s):  
K. Sugiyama ◽  
Y. Ma ◽  
R. Ishiguro

The objective of the present study is to clarify the heat transfer characteristics of natural convection around a horizontal circular cylinder immersed in liquid metals. Experimental work concerning liquid metals sometimes involves such a degree of error that it is impossible to understand the observed characteristics in a measurement. Numerical analysis is a powerful means to overcome this experimental disadvantage. In the present paper we first show that the Boussinesq approximation is more applicable to liquid metals than to ordinary fluids and that the present analysis gives accurate heat transfer rates, even for a cylinder with a relatively large temperature difference (>100 K) between the heat transfer surface and fluid. It is found from a comparison of the present results with previous work that the correlation equations that have already been proposed predict values lower than the present ones.

1986 ◽  
Vol 108 (4) ◽  
pp. 783-789 ◽  
Author(s):  
D. N. Mahony ◽  
R. Kumar ◽  
E. H. Bishop

A numerical finite difference investigation has been conducted to determine the effects of variable properties on the laminar natural convection of gases between horizontal isothermal concentric cylinders. Velocity profiles, temperature profiles, and heat transfer rates have been computed for diameter ratios of 1.5, 2.28, 2.6, and 5.0 and Rayleigh numbers based on gap width up to 1.8 × 105. The temperature difference ratio θo was varied from 0.2 to 3.0, and the range of validity of the Boussinesq approximation was determined to be θo = 0.2. A volume-weighted mean temperature was shown to be the most effective reference temperature to reduce the heat transfer data for each diameter ratio to a single curve of the form keq = C RaLn, for 0.2 ≤ θo ≤ 3.0 and RaL = 2.0 × 105.


Sign in / Sign up

Export Citation Format

Share Document