Scaling of Solutions for the Lateral Buckling of Elastic-Plastic Pipelines

Author(s):  
Ralf Peek ◽  
Heedo Yun

Analytical solutions for the lateral buckling of pipelines exist for the case when the pipe material remains in the linearly elastic range. However for truly high temperatures and/or heavier flowlines, plastic deformation cannot be excluded. One then has to resort to finite element analyses, as no analytical solutions are available. This paper does not provide such an analytical solution, but it does show that if the finite element solution has been calculated once, then that solution can be scaled so that it applies for any other values of the design parameters. Thus the finite element solution need only be calculated once and for all. Thereafter, other solutions can be calculated by scaling the finite element solution using simple analytical formulas. However, the shape of the moment-curvature relation must not change. That is, the moment-curvature relation must be a scaled version of the moment-curvature relation for the reference problem, where different scale factors may be applied to the moment and curvature. This paper goes beyond standard dimensional analysis (as justified by the Bucklingham Π theorem), to establish a stronger scalability result, and uses it to develop simple formulas for the lateral buckling of any pipeline made of elastic-plastic material. The paper includes the derivation of the scaling result, the application procedure, the reference solution for an elastic-perfectly plastic pipe, and an example to illustrate how this reference solution can be used to calculate the lateral buckling response for any elastic-perfectly plastic pipe.

Author(s):  
Ralf Peek ◽  
Heedo Yun

Analytical solutions for the lateral buckling of pipelines exist for the case when the pipe material remains in the linearly elastic range. However for truly high temperatures and/or heavier flowlines, plastic deformation cannot be excluded. One then has to resort to finite element analyses, as no analytical solutions are available. This paper does not provide such an analytical solution, but it does show that if the finite element solution has been calculated once, then that solution can be scaled so that it applies for any other values of the design parameters. Thus the finite element solution need only be calculated once and for all. Thereafter, other solutions can be calculated by scaling the finite element solution using simple analytical formulae. The only significant limitation is that the shape of the moment-curvature relation must not change. I.e. the moment-curvature relation for the problem to be solved must be a scaled version of the moment-curvature relation for the reference problem, where different scale factors may be applied to the moment and curvature. This paper goes beyond standard dimensional analysis (as justified by the Bucklingham Π theorem), to establish a stronger scalability result, and uses it to develop simple formulae for the lateral buckling of any pipeline made of elastic-plastic material. The paper includes the derivation of the scaling result, the application procedure, the reference solution for an elastic-perfectly plastic pipe, and an example to illustrate how this reference solution can be used to calculate the lateral buckling response for any elastic-perfectly plastic pipe.


2008 ◽  
Vol 130 (4) ◽  
Author(s):  
Vishnu Verma ◽  
A. K. Ghosh ◽  
G. Behera ◽  
Kamal Sharma ◽  
R. K. Singh

The miniature disk bending test is used to evaluate the mechanical behavior of irradiated materials and their properties (e.g., yield stress and strain hardening exponent) to determine mainly ductility loss in steel due to irradiation from the load-deflection behavior of the disk specimen. In the miniature disk bending machine the specimen is firmly held between the two horizontal jaws of punch, and an indentor with a spherical ball travels vertically. Analytical solutions for large amplitude plastic deformation become rather unwieldy. Hence, a finite element analysis has been carried out. The finite element model considers contact between the indentor and test specimen, friction between various pairs of surfaces, and elastic plastic behavior. This paper presents the load versus deflection results of a parametric study where the values of various parameters defining the material properties have been varied by ±10% around the base values. Some well-known analytical solutions to this problem have also been considered. It is seen that the deflection obtained by analytical elastic bending theory is significantly lower than that obtained by the elastoplastic finite element solution at relatively small values of load. The finite element solution has been compared with one experimental result and values are in reasonably good agreement. With these results it will be possible to determine the material properties from the experimentally obtained values of load and deflection.


1985 ◽  
Vol 107 (1) ◽  
pp. 13-18 ◽  
Author(s):  
B. V. Kiefer ◽  
P. D. Hilton

Capabilities for the analysis of combined viscous and plastic behavior have been added to an existing finite element computer program for two-dimensional elastic-plastic calculations. This program (PAPSTB) has been formulated for elastic-plastic stress and deformation analyses of two-dimensional and axisymmetric structures. It has the ability to model large strains and large deformations of elastic-perfectly plastic, multi-linear hardening, or power-hardening materials. The program is based on incremental plasticity theory with a von Mises yield criterion. Time dependent behavior has been introduced into the PAPSTB program by adding a viscous strain increment to the elastic and plastic strain increment to form the total strain increment. The viscous calculations presently employ a power-law relationship between the viscous strain rate and the effective stress. The finite element code can be easily modified to handle more complex viscous models. The Newmark method for time integration is used, i.e., an input parameter is included which enables the user to vary the time domain approximation between forward (explicit) and backward (implicit) difference. Automatic time stepping is used to provide for stability in the viscous calculations. It is controlled by an input parameter related to the ratio of the current viscous strain increment to the total strain. The viscoplastic capabilities of the PAPSTB program are verified using the axisymmetric problem of an internally pressurized, thick-walled cylinder. The transient viscoplastic case is analyzed to demonstrate that the elastic-perfectly plastic solution is obtained as a steady-state condition is approached. The influence of varying the time integration parameter for transient viscoplastic calculations is demonstrated. In addition, the effects of time step on solution accuracy are investigated by means of the automatic time stepping algorithm in the program. The approach is then applied to a simple forging problem of cylinder upsetting.


1985 ◽  
Vol 52 (1) ◽  
pp. 75-82 ◽  
Author(s):  
V. Bhargava ◽  
G. T. Hahn ◽  
C. A. Rubin

This paper presents finite element analyses of two-dimensional (plane strain), elastic-plastic, repeated, frictionless rolling contact. The analysis employs the elastic-perfectly plastic, cycle and strain-amplitude-independent material used in the Merwin and Johnson analysis but avoids several assumptions made by these workers. Repeated rolling contacts are simulated by multiple translations of a semielliptical Hertzian pressure distribution. Results at p0/k = 3.5, 4.35, and 5.0 are compared to the Merwin and Johnson prediction. Shakedown is observed at p0/k = 3.5, but the comparisons reveal significant differences in the amount and distribution of residual shear strain and forward flow at p0/k = 4.35 and p0/k = 5.0. The peak incremental, shear strain per cycle for steady state is five times the value calculated by Merwin and Johnson, and the plastic strain cycle is highly nonsymmetric.


2012 ◽  
Vol 134 (6) ◽  
Author(s):  
Phuong H. Hoang ◽  
Kunio Hasegawa ◽  
Bostjan Bezensek ◽  
Yinsheng Li

The circumferential flaw evaluation procedures in ASME Boiler and Pressure Vessel Code Section XI nonmandatory Appendix C are currently limited to straight pipes under pressure and bending loads without consideration of torsion loading. The Working Group on Pipe Flaw Evaluation of the ASME Boiler and Pressure Vessel Code is developing guidance for considering the effects of torsion by a mean of an equivalent bending moment, which is a square root of sum square combination of bending moment and torsion load with a weighted factor for torsion moment. A torsion weighted factor, Ce, is established in this paper using large strain finite element limit load analysis with elastic perfectly plastic materials. Planar flaws and nonplanar flaws in a 10.75 in. (273 mm) OD pipe are investigated. Additionally, a finite element J-integral calculation is performed for a planar through wall circumferential flaw with elastic plastic materials subjected to bending and torsion load combinations. The proposed Ce factor for planar flaws is intended for use with the ASME B&PV Code Section XI, Appendix C for limit load and Elastic Plastic Fracture Mechanics (EPFM) circumferential planar flaw evaluations.


1986 ◽  
Vol 2 (4) ◽  
pp. 389-407 ◽  
Author(s):  
James G. Malone ◽  
Robert Plunkett ◽  
Philip G. Hodge

1985 ◽  
Vol 52 (1) ◽  
pp. 67-74 ◽  
Author(s):  
V. Bhargava ◽  
G. T. Hahn ◽  
C. A. Rubin

This paper describes a two-dimensional (plane strain) elastic-plastic finite element model of rolling contact that embodies the elastic-perfectly plastic, cycle and amplitude-independent material of the Merwin and Johnson theory, but is rigorous with respect to equilibrium and continuity requirements. The rolling contact is simulated by translating a semielliptical pressure distribution. Both Hertzian and modified Hertzian pressure distributions are used to estimate the effect of plasticity on contact width and the continuity of the indentor-indentation interface. The model is tested for its ability to reproduce various features of the elastic-plastic indentation problem and the stress and strain states of single rolling contacts. This paper compares the results derived from the finite element analysis of a single, frictionless rolling contact at p0/k = 5 with those obtained from the Merwin and Johnson analysis. The finite element calculations validate basic assumptions made by Merwin and Johnson and are consistent with the development of “forward” flow. However, the comparison also reveals significant differences in the distribution of residual stress and strain components after a single contact cycle.


Sign in / Sign up

Export Citation Format

Share Document