Static Output Feedback Control for Electrohydraulic Active Suspensions via T–S Fuzzy Model Approach

Author(s):  
Haiping Du ◽  
Nong Zhang

The paper presents a fuzzy static output feedback controller design approach for vehicle electrohydraulic active suspensions based on Takagi–Sugeno (T–S) fuzzy modeling technique. The T–S fuzzy model is first applied to represent the nonlinear dynamics of an electrohydraulic suspension. Then, the fuzzy static output feedback controller is designed for the obtained T–S fuzzy model to optimize the H∞ performance of ride comfort through the parallel distributed compensation scheme. The sufficient conditions for the existence of such a controller are derived in terms of linear matrix inequalities (LMIs) with an equality constraint. A computational algorithm is presented to convert the equality constraint into a LMI so that the controller gains can be obtained by solving a minimization problem with LMI constraints. To validate the effectiveness of the proposed approach, two kinds of static output feedback controllers, which use suspension deflection and sprung mass velocity, and suspension deflection only, respectively, as feedback signals, are designed. It is confirmed by the simulations that the designed controllers can achieve good suspension performance similar to that of the active suspension with optimal skyhook damper.

2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Xingang Zhao

This paper is concerned with the problem of designingH∞controllers via static output feedback controller for a class of complex nonlinear systems, which is approximated by continuous-time affine fuzzy models. A decomposition method is presented to divide the output-space into different operating regions and interpolation regions. Based on this partition, a novel piecewise controller with affine terms via static output feedback is designed. By using a dilated linear matrix inequality (LMI) characterization, some nonconvex conditions are converted into convex ones to make the asymptotic stability andH∞performance of the closed-looped system. The effectiveness of the proposed method is illustrated by a numerical example.


Author(s):  
Kho Hie Kwee ◽  
Hardiansyah .

This paper addresses the design problem of robust H2 output feedback controller design for damping power system oscillations. Sufficient conditions for the existence of output feedback controllers with norm-bounded parameter uncertainties are given in terms of linear matrix inequalities (LMIs). Furthermore, a convex optimization problem with LMI constraints is formulated to design the output feedback controller which minimizes an upper bound on the worst-case H2 norm for a range of admissible plant perturbations. The technique is illustrated with applications to the design of stabilizer for a single-machine infinite-bus (SMIB) power system. The LMI based control ensures adequate damping for widely varying system operating.


Sign in / Sign up

Export Citation Format

Share Document