GPU-Based Real-Time Occlusion in an Immersive Augmented Reality Environment

Author(s):  
Yuzhu Lu ◽  
Shana Smith

In this paper, we present a prototype system, which uses CAVE-based virtual reality to enhance immersion in an augmented reality environment. The system integrates virtual objects into a real scene captured by a set of stereo remote cameras. We also present a graphic processing unit (GPU)-based method for computing occlusion between real and virtual objects in real time. The method uses information from the captured stereo images to determine depth of objects in the real scene. Results and performance comparisons show that the GPU-based method is much faster than prior CPU-based methods.

Author(s):  
Yuzhu Lu ◽  
Shana Smith

In this paper, we present a prototype system which makes use of the characterisitcs of CAVE-based virtual reality to enhance immersion in an augmented-reality environment. The system integrates virtual objects into a real scene captured by a set of stereo remote cameras. We also developed a GPU-based method for computing occlusion between real and virtual objects, in real time. The method uses information from the captured stereo images to determine depth of objects in the real scene. Results and performance comparisons show that the GPU-based method is much faster than prior CPU-based methods.


2021 ◽  
Author(s):  
Ezgi Pelin Yildiz

Augmented reality is defined as the technology in which virtual objects are blended with the real world and also interact with each other. Although augmented reality applications are used in many areas, the most important of these areas is the field of education. AR technology allows the combination of real objects and virtual information in order to increase students’ interaction with physical environments and facilitate their learning. Developing technology enables students to learn complex topics in a fun and easy way through virtual reality devices. Students interact with objects in the virtual environment and can learn more about it. For example; by organizing digital tours to a museum or zoo in a completely different country, lessons can be taught in the company of a teacher as if they were there at that moment. In the light of all these, this study is a compilation study. In this context, augmented reality technologies were introduced and attention was drawn to their use in different fields of education with their examples. As a suggestion at the end of the study, it was emphasized that the prepared sections should be carefully read by the educators and put into practice in their lessons. In addition it was also pointed out that it should be preferred in order to communicate effectively with students by interacting in real time, especially during the pandemic process.


2012 ◽  
Author(s):  
R. A. Grier ◽  
H. Thiruvengada ◽  
S. R. Ellis ◽  
P. Havig ◽  
K. S. Hale ◽  
...  

Author(s):  
Yulia Fatma ◽  
Armen Salim ◽  
Regiolina Hayami

Along with the development, the application can be used as a medium for learning. Augmented Reality is a technology that combines two-dimensional’s virtual objects and three-dimensional’s virtual objects into a real three-dimensional’s  then projecting the virtual objects in real time and simultaneously. The introduction of Solar System’s material, students are invited to get to know the planets which are directly encourage students to imagine circumtances in the Solar System. Explenational of planets form and how the planets make the revolution and rotation in books are considered less material’s explanation because its only display objects in 2D. In addition, students can not practice directly in preparing the layout of the planets in the Solar System. By applying Augmented Reality Technology, information’s learning delivery can be clarified, because in these applications are combined the real world and the virtual world. Not only display the material, the application also display images of planets in 3D animation’s objects with audio.


Author(s):  
Kevin Lesniak ◽  
Conrad S. Tucker

The method presented in this work reduces the frequency of virtual objects incorrectly occluding real-world objects in Augmented Reality (AR) applications. Current AR rendering methods cannot properly represent occlusion between real and virtual objects because the objects are not represented in a common coordinate system. These occlusion errors can lead users to have an incorrect perception of the environment around them when using an AR application, namely not knowing a real-world object is present due to a virtual object incorrectly occluding it and incorrect perception of depth or distance by the user due to incorrect occlusions. The authors of this paper present a method that brings both real-world and virtual objects into a common coordinate system so that distant virtual objects do not obscure nearby real-world objects in an AR application. This method captures and processes RGB-D data in real-time, allowing the method to be used in a variety of environments and scenarios. A case study shows the effectiveness and usability of the proposed method to correctly occlude real-world and virtual objects and provide a more realistic representation of the combined real and virtual environments in an AR application. The results of the case study show that the proposed method can detect at least 20 real-world objects with potential to be incorrectly occluded while processing and fixing occlusion errors at least 5 times per second.


Author(s):  
Marisa Pascarelli Agrello ◽  
Marianina Impagliazzo ◽  
Joaquim José Escola

ResumoNo presente artigo apresentamos a experiência realizada com o uso dos softwares de realidade aumentada (RA) e a realidade virtual (RV) em cenários para o Ensino das Ciências objetivando atender a Era da Educação 4 por meio de manipulação de objetos virtuais.Com aplicações distintas, as duas tecnologias são complementares e se configuram como ferramentas adicionais aos docentes com a proposta de elevar a qualidade das aulas e a geração de uma aprendizagem significativa representando uma ponte entre a educação e a tecnologia. Como objetos virtuais de aprendizagem (OVA), deverão ser usados em sala de aula como forma de enriquecimento das experiências práticas por meio da representação virtual de temas e contextos tornando mais ativa, contextualizada e efetiva o processo de apreensão do mundo. Palavras-chave: realidade virtual, realidade aumentada, ensino das ciências, tecnologias educacionais. Abstract In the present article we present the experience with the use of software of augmented reality (RA) and virtual reality (VR) in scenarios for the Teaching of Sciences in order to attend the Age 4 of Education through manipulation of virtual objects, the two technologies are complementary and are configured as additional tools for teachers with the proposal of raising the quality of lessons and generating meaningful learning as a bridge between education and technology. As virtuais learning objects, they should be used in the classroom as a way to enrich practical experiences through virtual representation of themes and contexts, making the process of apprehension of the world more active, contextualized and effective. Keywords: virtual reality, augmented reality, science teaching, educational technologies.


Author(s):  
Gabriel Zachmann

Collision detection is one of the enabling technologies in many areas, such as virtual assembly simulation, physically-based simulation, serious games, and virtual-reality based medical training. This chapter will provide a number of techniques and algorithms that provide efficient, real-time collision detection for virtual objects. They are applicable to various kinds of objects and are easy to implement.


2016 ◽  
Vol 45 (3) ◽  
pp. 310001 ◽  
Author(s):  
倪小龙 NI Xiao-long ◽  
刘智 LIU Zhi ◽  
姜会林 JIANG Hui-lin ◽  
陈纯毅 CHEN Chun-yi ◽  
刘艺 LIU Yi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document