Initial Region of Subsonic Coaxial Jets of High Mean-Velocity Ratio

1981 ◽  
Vol 103 (2) ◽  
pp. 335-338 ◽  
Author(s):  
N. W. M. Ko ◽  
H. Au

This paper describes an experimental investigation of the initial region of subsonic coaxial jets of three different mean-velocity ratios λ higher than unity. Detailed measurements have found similarity of the mean velocity and turbulence intensity profiles within the three zones: initial merging, intermediate, and fully merged zone. Similarity with single jet results has been found. In the inner mixing region, however, only the similarity of the mean velocity profiles has been found.

Author(s):  
H. Au ◽  
N.W.M. Ko

This paper describes an experimental investigation of the initial region of a subsonic cold coaxial jet at a mean-velocity ratio λ, outer to inner, of 1.25. Detailed measurements in the initial region have shown that similarity of the pressure intensity profiles exists in the three zones: the initial merging zone, the intermediate zone and the fully merged zone. Spectral measurements of the pressure fluctuations confirm the existence of coherent structures in the outer mixing region. Comparison of the coaxial jet results with those of the single jet has been attempted.


1978 ◽  
Vol 84 (4) ◽  
pp. 641-656 ◽  
Author(s):  
N. W. M. Ko ◽  
W. T. Chan

This paper describes part of a detailed study of the initial region of three annular jets. The configurations are the basic one, without any bullet in the centre, and those with a conical and an elliptical bullet. From the mean velocity and turbulence intensity measurements the initial region can be divided into the initial merging, the intermediate and the fully merged zones. Within these three zones similarity of both the mean velocity and the turbulence intensity profiles has been found. The similarity curves are compared with those for a single jet.


Water ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 883
Author(s):  
Nargess Moghaddassi ◽  
Seyed Habib Musavi-Jahromi ◽  
Mohammad Vaghefi ◽  
Amir Khosrojerdi

As 180-degree meanders are observed in abundance in nature, a meandering channel with two consecutive 180-degree bends was designed and constructed to investigate bed topography variations. These two 180-degree mild bends are located between two upstream and downstream straight paths. In this study, different mean velocity-to-critical velocity ratios have been tested at the upstream straight path to determine the meander’s incipient motion. To this end, bed topography variations along the meander and the downstream straight path were addressed for different mean velocity-to-critical velocity ratios. In addition, the upstream bend’s effect on the downstream bend was investigated. Results indicated that the maximum scour depth at the downstream bend increased as a result of changing the mean velocity-to-critical velocity ratio from 0.8 to 0.84, 0.86, 0.89, 0.92, 0.95, and 0.98 by, respectively, 1.5, 2.5, 5, 10, 12, and 26 times. Moreover, increasing the ratio increased the maximum sedimentary height by 3, 10, 23, 48, 49, and 56 times. The upstream bend’s incipient motion was observed for the mean velocity-to-critical velocity ratio of 0.89, while the downstream bend’s incipient motion occurred for the ratio of 0.78.


Author(s):  
Redha Wahidi ◽  
Walid Chakroun ◽  
Sami Al-Fahad

Turbulent boundary layer flows over a flat plate with multiple transverse square grooves spaced 10 element widths apart were investigated. Mean velocity profiles, turbulence intensity profiles, and the distributions of the skin-friction coefficients (Cf) and the integral parameters are presented for two grooved walls. The two transverse square groove sizes investigated are 5mm and 2.5mm. Laser-Doppler Anemometer (LDA) was used for the mean velocity and turbulence intensity measurements. The skin-friction coefficient was determined from the gradient of the mean velocity profiles in the viscous sublayer. Distribution of Cf in the first grooved-wall case (5mm) shows that Cf overshoots downstream of the groove and then oscillates within the uncertainty range and never shows the expected undershoot in Cf. The same overshoot is seen in the second grooved-wall case (2.5mm), however, Cf continues to oscillate above the uncertainty range and never returns to the smooth-wall value. The mean velocity profiles clearly represent the behavior of Cf where a downward shift is seen in the Cf overshoot region and no upward shift is seen in these profiles. The results show that the smaller grooves exhibit larger effects on Cf, however, the boundary layer responses to these effects in a slower rate than to those of the larger grooves.


Author(s):  
Nargess Moghaddassi ◽  
Seyed Habib Musavi-Jahromi ◽  
Mohammad Vaghefi ◽  
Amir Khosrojerdi

As 180-degree meanders are observed in abundance in nature, a meandering channel with two consecutive 180-degree bends was designed and constructed to investigate bed topography variations. These two 180-degree mild bends are located between two upstream and downstream straight paths. In this study, different mean velocity to critical velocity ratios have been tested at the upstream straight path to determine the meander's incipient motion. To this end, bed topography variations along the meander and the downstream straight path were addressed for different mean velocity to critical velocity ratios. In addition, the upstream bend's effect on the downstream bend has been investigated. Results indicated that the maximum scour depth at the downstream bend has increased as a result of changing the mean velocity to critical velocity ratio from 0.8 to 0.84, 0.86, 0.89, 0.92, 0.95, and 0.98 by respectively 1.5, 2.5, 5, 10, 12, and 26 times. Moreover, increasing the ratio increased the maximum sedimentary height by 3, 10, 23, 48, 49, and 56 times. The upstream bend's incipient motion was observed for the mean velocity to critical velocity ratio of 0.89, while the downstream bend was equal to 0.78.


1973 ◽  
Vol 95 (3) ◽  
pp. 467-473 ◽  
Author(s):  
D. Dura˜o ◽  
J. H. Whitelaw

Measurements of mean velocity, the three normal stresses and Reynolds shear stress are reported in the developing region of coaxial jet flows. The measurements were obtained with three velocity ratios, i.e., values of the ratio of maximum initial pipe velocity to maximum initial annulus velocity of 0, 0.23, and 0.62 and at downstream distances up to 17 outer diameters. The results show that coaxial jets tend to reach a self-preserving state much more rapidly than axisymmetric single jets; that the mean velocity, normal stresses, and Reynolds shear stress attain this state at a similar downstream location; and that, for the particular geometry investigated, a velocity ratio of around 0.15 corresponds to the slowest rate of development. Relationships between mean velocity gradient, Reynolds shear stress, and turbulent kinetic energy are examined to assess their ability to characterize the present flow: the results indicate the need to take account of the normal stresses in any proposed mathematical model.


1996 ◽  
Vol 118 (2) ◽  
pp. 300-306 ◽  
Author(s):  
M. V. O¨tu¨gen ◽  
F. Girlea ◽  
P. M. Sforza

The effects of small streamline curvature on the growth and axial flow development of a turbulent incompressible jet in a curved coflow was investigated experimentally. The jet streamline curvature was achieved by introducing the initially round jet tangentially into a stream flowing through a curved channel of square cross-section. The jet issued from a straight pipe and had a fully developed velocity profile at the exit plane. The jet Reynolds number and the coflow-to-jet-velocity ratio were 4300 and 0.11, respectively. A single component laser Doppler anemometer was used to measure the streamwise velocity. Axial mean velocity and turbulence intensity profiles were measured at various streamwise locations in both the plane of curvature and the surface perpendicular to the plane of curvature. The results indicate that the jet growth and turbulence intensity are influenced by the small streamline curvature. The growth rate of the curved jet in the plane of curvature is slightly increased compared to that of a straight jet. However, the growth of the same curved jet is suppressed in the plane perpendicular to the plane of curvature. In the plane of curvature, the inner jet half-width is larger than the outer jet half-width. The mean velocity profiles in this plane are nearly Gaussian when the lateral distance is normalized by the respective inner and outer side jet half-widths. The axial turbulence intensity profiles show asymmetry in the plane of curvature with a pronounced peak on the outer side of the jet.


2016 ◽  
Author(s):  
Jan Bartl ◽  
Lars Sætran

Abstract. This is a summary of the results of the fourth Blind test workshop which was held in Trondheim in October 2015. Herein, computational predictions on the performance of two in-line model wind turbines as well as the mean and turbulent wake flow are compared to experimental data measured at NTNU's wind tunnel. A detailed description of the model geometry, the wind tunnel boundary conditions and the test case specifications was published before the workshop. Expert groups within Computational Fluid Dynamics (CFD) were invited to submit predictions on wind turbine performance and wake flow without knowing the experimental results at the outset. The focus of this blind test comparison is to examine the model turbines' performance and wake development up until 9 rotor diameters downstream at three different atmospheric inflow conditions. Besides a spatially uniform inflow field of very low turbulence intensity (TI = 0.23 %) as well as high turbulence intensity (TI = 10.0 %), the turbines are exposed to a grid-generated atmospheric shear flow (TI = 10.1 %). Five different research groups contributed with their predictions using a variety of simulation models, ranging from fully resolved Reynolds Averaged Navier Stokes (RANS) models to Large Eddy Simulations (LES). For the three inlet conditions the power and the thrust force of the upstream turbine is predicted fairly well by most models, while the predictions of the downstream turbine's performance show a significantly higher scatter. Comparing the mean velocity profiles in the wake, most models approximate the mean velocity deficit level sufficiently well. However, larger variations between the models for higher downstream positions are observed. The prediction of the turbulence kinetic energy in the wake is observed to be very challenging. Both the LES model and the IDDES (Improved Delayed Detached Eddy Simulation) model, however, are consistently managing to provide fairly accurate predictions of the wake turbulence.


Sign in / Sign up

Export Citation Format

Share Document