Closure to “Discussion of ‘Pressure and Vortex Shedding Patterns Around a Low Aspect Ratio Cylinder in a Sheared Flow at Transcritical Reynolds Numbers’” (1981, ASME J. Fluids Eng., 103, p. 373)

1981 ◽  
Vol 103 (2) ◽  
pp. 374-374
Author(s):  
D. M. Rooney ◽  
R. D. Peltzer
Author(s):  
Rodolfo T. Gonçalves ◽  
Dennis M. Gambarine ◽  
Aline M. Momenti ◽  
Felipe P. Figueiredo ◽  
André L. C. Fujarra

Experiments regarding flow-induced vibration on floating rounded squared section cylinders with low aspect ratio were carried out in an ocean basin equipped with a rotating-arm apparatus. Floating squared section cylinders with rounded edges and aspect ratios of L/D = 2.0 were elastically supported by a set of linear springs in order to provide low structural damping to the system. Two different incidence angles were tested, namely 0 and 45 degrees. The Reynolds numbers covered the range from 2,000 to 30,000. The aim was to understand the flow-induced vibrations around single columns, gathering information for further understanding the causes for the Vortex-Induced Motions in semi-submersible and TLP platforms. Experiments on circular and squared sections cylinders (without rounded edges) were also carried out to compare the results with the rounded square section cylinders (with rounded edges). The amplitude results for in-line, transverse and yaw amplitude for 0-degree models showed to be higher for squared section cylinders compared to those for the rounded square section cylinders. No significant difference between the 45-degree models was observed. The results of ratio between frequency of motion in the transverse direction and natural frequency in still water confirmed the vortex-induced vibration behavior for the squared and rounded square section cylinders for 45-degree incidence; and also the galloping characteristics for 0-degree incidence cases. The rounded effect on the square section cylinders showed to be important only for reduced velocity larger than 8, which is probably related to the position of the separation point that changes around the rounded edge, behavior that did not occurr for the squared edge that fixed the separation point for any reduced velocity.


2005 ◽  
Vol 128 (2) ◽  
pp. 153-161 ◽  
Author(s):  
Takayuki Tsutsui ◽  
Masafumi Kawahara

Heat transfer characteristics around a low aspect ratio cylindrical protuberance placed in a turbulent boundary layer were investigated. The diameters of the protuberance, D, were 40 and 80mm, and the height to diameter aspect ratio H∕D ranged from 0.125 to 1.0. The Reynolds numbers based on D ranged from 1.1×104 to 1.1×105 and the thickness of the turbulent boundary layer at the protuberance location, δ, ranged from 26 to 120mm for these experiments. In this paper we detail the effects of the boundary layer thickness and the protuberance aspect ratio on heat transfer. The results revealed that the overall heat transfer for the cylindrical protuberance reaches a maximum value when H∕δ=0.24.


Sign in / Sign up

Export Citation Format

Share Document