Experimental Observations of the Microlayer in Vapor Bubble Growth on a Heated Solid

1983 ◽  
Vol 105 (3) ◽  
pp. 625-632 ◽  
Author(s):  
L. D. Koffman ◽  
M. S. Plesset

Experimental measurements of microlayer formation and of the time history of microlayer thickness change have been obtained for nucleate boiling of water and ethanol. These detailed measurements were obtained using laser interferometry combined with high-speed cinematography. The measurement technique is discussed in detail with emphasis on the difficulties encountered in interpretation of the fringe patterns. The measurements for water can be reasonably applied to the data of Gunther and Kreith, in which case it is concluded that microlayer evaporation alone cannot account for the increased heat transfer rates observed in highly subcooled nucleate boiling. It appears that microconvection must play at least an equal role.

1975 ◽  
Vol 97 (1) ◽  
pp. 88-92 ◽  
Author(s):  
C. M. Voutsinos ◽  
R. L. Judd

An experimental investigation is presented in which the growth and evaporation of the microlayer underlying a bubble forming on a glass heater surface has been studied using laser interferometry and high speed photography. The results presented for a single bubble indicate that the microlayer thickness is of the order of 5 μm. Subsequent analysis of these results confirms that the microlayer evaporation phenomenon is a significant heat transfer mechanism, representing approximately 25 percent of the total nucleate boiling heat transfer rate for the conditions investigated.


1976 ◽  
Vol 98 (4) ◽  
pp. 623-629 ◽  
Author(s):  
R. L. Judd ◽  
K. S. Hwang

The results of an experimental investigation are presented in which dichloromethane (methylene chloride) boiling on a glass surface was studied using laser interferometry and high-speed photography. New data for active site density, frequency of bubble emission, and bubble departure radius were obtained in conjunction with measurements of the volume of microlayer evaporated from the film underlying the base of each bubble for various combinations of heat flux and subcooling. These results were used to support a model for predicting boiling heat flux incorporating microlayer evaporation, natural convection, and nucleate boiling mechanisms. Microlayer evaporation heat transfer is shown to represent a significant proportion of the total heat transfer for the range of heat flux and sub-cooling investigated.


1978 ◽  
Vol 100 (1) ◽  
pp. 49-55 ◽  
Author(s):  
H. S. Fath ◽  
R. L. Judd

Evaporation of the microlayer underlying a bubble during nucleate boiling heat transfer is experimentally investigated by boiling dichloromethane (methylene chloride) on an oxide coated glass surface using laser interferometry and high speed photography. The influence of system pressure (51.5 kN/m2—101.3 kN/m2) and heat flux (17 k W/m2—65 kW/m2) upon the active site density, frequency of bubble emission, bubble departure radius and the volume of the microlayer evaporated have been studied. The results of the present investigation indicate that the microlayer evaporation phenomenon is a significant heat transfer mechanism, especially at low pressure, since up to 40 percent of the total heat transport is accounted for by microlayer evaporation. This contribution to the overall heat transfer decreases with increasing system pressure and decreasing heat flux. The results obtained were used to support the model propounded by Hwang and Judd for predicting boiling heat flux incorporating microlayer evaporation, natural convection and transient thermal conduction mechanisms.


Author(s):  
Athanassios C. Iossifides ◽  
Spiros Louvros

Mobile broadband communications systems have already become a fact during the last few years. The evolution of 3G Universal Mobile Telecommunications Systems (UMTS) towards HSDPA/HSUPA systems have already posed a forceful solution for mobile broadband and multimedia services in the market, making a major step ahead of the main competitive technology, that is, WiMax systems based on IEEE 802.16 standard. According to the latest analyses (GSM Association, 2007; Little, 2007), while WiMax has gained considerable attention the last few years, HSPA is expected to dominate the mobile broadband market. The main reasons behind this forecast are: • HSPA is already active in a significant number of operators and is going to be established for the majority of mobile broadband networks worldwide over the next five years, while commercial WiMax systems are only making their first steps. • Mobile WiMax is a competitive technology for selection by operators in only a limited number of circumstances where conditions are favourable. Future mobile WiMax systems may potentially achieve higher data transfer rates than HSPA, though cell coverage for these rates is expected to be substantially smaller. In addition, WiMax technology is less capable in terms of voice traffic capacity, thus limiting market size and corresponding revenues. • In order to overcome the aforementioned disadvantages, WiMax commercial launches are expected to introduce a relative CAPEX disadvantage of at least 20–50% comparing to HSPA, in favorable cases, while there are indications of an increase by up to 5–10 times when accounting for rural areas deployments. The short commercial history of HSDPA (based on Rel.5 specifications of 3GPP) started in December of 2005 (first wide scale launch by Cingular Wireless, closely followed by Manx Telecom and Telekom Austria). Bite Lietuva (Lithuania) was the first operator that launched 3.6 Mbps. HSUPA was first demonstrated by Mobilkom Austria in November 2006 and soon launched commercially in Italia by 3 in December 2006. Mobilkom Austria launched the combination of HSDPA at 7.2 Mbps and HSUPA in February 2007. By September of 2007, less than two years after the first commercial launch, 141 operators in 65 countries (24 out of 27 in EU) have already gone commercial with HSDPA with 38 operators among them supporting a 3.6 Mbps downlink. In addition, devices supporting HSDPA/HSUPA services are rapidly enriched. 311 devices from 79 suppliers have already been available by September 2007, including handsets, data cards, USB modems, notebooks, wireless routers, and embedded modules (http://hspa.gsmworld.com).


1998 ◽  
Vol 120 (1) ◽  
pp. 74-80 ◽  
Author(s):  
J. Yang ◽  
D. C. Wiggert

A quasi-two-dimensional two-phase flow cylindrical model of slug motion in a voided line is developed that can reasonably predict the change of flow pattern of the slug, air entrainment, “holdup” and the distribution of axial velocity. However, when using the theory of incompressible momentum transfer to estimate the pressure-time history of slug at the elbow, the calculated results are not in good agreement with those of the experiments. Further analysis of the experimental results indicate that an acoustic, or waterhammerlike response may occur immediately upon impact of the high-speed slug with the elbow, and subsequently, the waveform exhibits momentum transfer due to the acceleration of the slug at the elbow.


Both experimental and theoretical methods are used to investigate the mechanics of the emergence and flight of a liquid jet travelling at speeds supersonic relative to the sound speed of the liquid. The experimental work uses an Imacon image converter camera to follow the mechanical events at micro-second framing intervals. The theoretical investigation employs similarity arguments and the Tschaplygin transformation to investigate the role of liquid overcompression in the process of the jet emergence. In addition, simple theoretical arguments are used to examine the effects of Stokes drag on the small liquid particle shroud surrounding the jet and Taylor instability effects in the late time history of the jet’s flight. An evacuated chamber is used to verify the theoretical prediction that subsonic (relative to the liquid sound speed) jets will not undergo the violent decompression process predicted for supersonic jets. The experimental and theoretical evidence are synthesized into an overall picture of the jet’s history from initial decompression of an overdense supersonic jet to the breakup of the resulting liquid slugs by deceleration and Taylor instability.


Author(s):  
Yaohui Lu ◽  
Linyuan Dang ◽  
Xing Zhang ◽  
Zhen Feng ◽  
Jing Zeng ◽  
...  

For a vehicle operating under different line conditions, coupled with track irregularity and many other factors, the carbody is subjected to extremely complex random loads, and the load mainly exists in the form of an alternating load; therefore, the primary type of failure is fatigue failure. With the continuous improvement in train speed, lightweight designs of carbody structures and the application of high-strength aluminium alloy, the safety and reliability of a carbody require more attention. An investigation of the dynamic fatigue reliability of a full-scale carbody of a high-speed train under random load conditions is carried out. A dynamics model of the vehicle system has been established for acquiring the time history of forces acting on the carbody by each air spring (hereinafter referred to as ‘the load–time history’). A surrogate model (a simple model instead of a complex carbody model) of the carbody is established based on the Box–Behnken matrix design and the polynomial fitting method; then, the load–time history is transformed to the stress–time history of the points of concern, and the results are compared with the results of the transient analysis, which verify the accuracy and effectiveness of the surrogate model. Then, a stress block spectrum is obtained by rain flow counting, and the stress probability distribution is determined. Combined with the probability distribution of fatigue strength, a dynamic stress–strength interference model (the area of interference between strength and stress in the model changes over time) is established. The failure rate and dynamic reliability of the points of concern for two cases are analysed: without considering the strength degradation and considering the strength degradation. The results show that without considering the strength degradation during service, with increased service mileage, the fatigue strength reliability of the points of concern decreases continuously, and the corresponding failure rate of the points of concern decreases with time and reaches a steady value, which has the characteristics of the first two stages of the bathtub curve. By considering the strength degradation during service, the reliability of the points of concern decreases gradually, and the corresponding failure rate of the points of concern decreases and then increases, with all the features of the bathtub curve. In addition, compared with the base metal region, the fatigue resistance of the welded structure decreases due to welding. Under the same service conditions, the reliability of the welded region is relatively low, and fatigue failure is more likely to occur.


2014 ◽  
Vol 633-634 ◽  
pp. 1166-1173
Author(s):  
Yu Guang Wang ◽  
Da Fu Zhang

The load spectrum, on which there is not a thorough research, is the key factor of the safe operation of EMU. A dynamic model of some high-speed EMU is established and the load time history of main load on frame is obtained through simulation and analysis based on the Beijing-Tianjin route. The load spectrum for main load is calculated by rain-flow counting, the crossing contrast of load spectrum in basic and fault conditions is proceeded as well, the extent of impact of all kinds of fault conditions to bogie main load is analyzed and a brief introduction of estimation method of the frame fatigue life is put forward in this paper.


2021 ◽  
Vol 931 ◽  
Author(s):  
Gulshan Kumar Sinha ◽  
Surya Narayan ◽  
Atul Srivastava

The phenomena of microlayer formation and its dynamic characteristics during the nucleate pool boiling regime have been widely investigated in the past. However, experimental works on real-time microlayer dynamics during nucleate flow boiling conditions are highly scarce. The present work is an attempt to address this lacuna and is concerned with developing a fundamental understanding of microlayer dynamics during the growth process of a single vapour bubble under nucleate flow boiling conditions. Boiling experiments have been conducted under subcooled conditions in a vertical rectangular channel with water as the working fluid. Thin-film interferometry combined with high-speed cinematography have been adopted to simultaneously capture the dynamic behaviour of the microlayer along with the bubble growth process. Transients associated with the microlayer have been recorded in the form of interferometric fringe patterns, which clearly reveal the evolution of the microlayer beneath the growing vapour bubble, the movement of the triple contact line and the growth of the dryspot region during the bubble growth process. While symmetric growth of the microlayer was confirmed in the early growth phase, the bulk flow-induced bubble deformation rendered asymmetry to its profile during the later stages of the bubble growth process. The recorded fringe patterns have been quantitatively analysed to obtain microlayer thickness profiles at different stages of the bubble growth process. For Re = 3600, the maximum thickness of the almost wedge-shaped microlayer was obtained as δ ~ 3.5 μm for a vapour bubble of diameter 1.6 mm. Similarly, for Re = 6000, a maximum microlayer thickness of δ ~ 2.5 μm was obtained for a bubble of diameter 1.1 mm.


Sign in / Sign up

Export Citation Format

Share Document