Surface Geometry of Straight and Spiral Bevel Gears

1987 ◽  
Vol 109 (4) ◽  
pp. 443-449 ◽  
Author(s):  
Y. C. Tsai ◽  
P. C. Chin

The fundamental geometrical characteristics of bevel gears have been discussed in this study. The mathematical modeling of the tooth surface geometry of bevel gears can be developed based on the basic gearing kinematics and involute geometry along with the tangent planes geometry. The parametric representations of the spherical involute and the involute spiraloid, which are the tooth surface geometry of straight bevels and spiral bevels, respectively, have been derived in this paper. This study may provide some fundamentals for computer numerical controlled manufacturing of bevel gears.

2014 ◽  
Vol 1 (1) ◽  
pp. 27-36 ◽  
Author(s):  
Shuqian Fan ◽  
Jinsong Zou ◽  
Mingquan Shi

Abstract Similar to the essential components of many mechanical systems, the geometrical properties of the teeth of spiral bevel gears greatly influence the kinematic and dynamic behaviors of mechanical systems. Logarithmic spiral bevel gears show a unique advantage in transmission due to their constant spiral angle property. However, a mathematical model suitable for accurate digital modeling, differential geometrical characteristics, and related contact analysis methods for tooth surfaces have not been deeply investigated, since such gears are not convenient in traditional cutting manufacturing in the gear industry. Accurate mathematical modeling of the tooth surface geometry for logarithmic spiral bevel gears is developed in this study, based on the basic gearing kinematics and spherical involute geometry along with the tangent planes geometry; actually, the tooth surface is a parametric surface defined on a parallelogrammic domain. Equivalence proof of the tooth surface geometry is then given in order to greatly simplify the mathematical model. As major factors affecting the lubrication, surface fatigue, contact stress, wear, and manufacturability of gear teeth, the differential geometrical characteristics of the tooth surface are summarized using classical fundamental forms. By using the geometrical properties mentioned, manufactura-bility (and its limitation in logarithmic spiral bevel gears) is analyzed using precision forging and multi-axis freeform milling, rather than classical cradle-type machine tool based milling or hobbing. Geometry and manufacturability analysis results show that logarithmic spiral gears have many application advantages, but many urgent issues such as contact tooth analysis for precision plastic forming and multi-axis freeform milling also need to be solved in a further study.


2010 ◽  
Vol 132 (2) ◽  
Author(s):  
Ligang Yao ◽  
Bing Gu ◽  
Shujuan Haung ◽  
Guowu Wei ◽  
Jian S. Dai

The purpose of this paper is to propose a pair of external and internal spiral bevel gears with double circular-arc in the nutation drive. Based on the movement of nutation, this paper develops equations of the tooth profiles for the gear set, leading to the mathematical modeling of the spiral bevel gear with a constant helical angle gear alignment curve, enabling the tooth surface to be generated, and permitting the theoretical contacting lines to be produced in light of the meshing function. Simulation and verification are carried out to prove the mathematical equations. Numerical control (NC) simulation of machining the external and internal double circular-arc spiral bevel gears is developed, and the spiral gears were manufactured on a NC milling machine. The prototype of the nutation drive is illustrated in the case study at the end of this paper.


1982 ◽  
Vol 104 (4) ◽  
pp. 743-748 ◽  
Author(s):  
R. L. Huston ◽  
J. J. Coy

An analysis of the surface geometry of spiral bevel gears formed by a circular cutter is presented. The emphasis is upon determining the tooth surface principal radii of curvature of crown (flat) gears. Specific results are presented for involute, straight, and hyperbolic cutter profiles. It is shown that the geometry of circular cut spiral bevel gears is somewhat simpler than a theoretical logarithmic spiral bevel gear.


Author(s):  
F. L. Litvin ◽  
Yi Zhang ◽  
R. F. Handschuh

Abstract An advanced design methodology is proposed for the face-milled spiral bevel gears with modified tooth surface geometry that provides a reduced level of noise and has a stabilized bearing contact. The approach is based on the local synthesis of the gear drive that provides the “best” machine-tool settings. The theoretical aspects of the local synthesis approach are based on the application of a predesigned parabolic function for absorption of undesirable transmission errors caused by misalignment and the direct relations between principal curvatures and directions for mating surfaces. The meshing and contact of the gear drive is synthesized and analyzed by a computer program. The generation of gears with the proposed geometry design can be accomplished by application of existing equipment. A numerical example that illustrates the proposed theory is presented.


Author(s):  
Vilmos V. Simon

In this study, a method is proposed for the advanced manufacture of face-hobbed spiral bevel gears on CNC hypoid generators with optimized tooth surface geometry. An optimization methodology is applied to systematically define optimal head-cutter geometry and machine tool settings to introduce optimal tooth modifications. The goal of the optimization is to simultaneously minimize tooth contact pressures and angular displacement error of the driven gear (the transmission error). The optimization is based on machine tool setting variation on the cradle-type generator conducted by optimal polynomial functions. An algorithm is developed for the execution of motions on the CNC hypoid generator using the relations on the cradle-type machine. Effectiveness of the method was demonstrated by using a face-hobbed spiral bevel gear example. Significant reductions in the maximum tooth contact pressure and in the transmission errors were obtained.


1983 ◽  
Vol 105 (3) ◽  
pp. 310-316 ◽  
Author(s):  
F. L. Litvin ◽  
R. N. Goldrich ◽  
J. J. Coy ◽  
E. V. Zaretsky

An analytical method was derived for determining the kinematic errors in spiral-bevel gear trains caused by the generation of nonconjugate surfaces, by axial displacements of the gear assembly, and by eccentricity of the assembled gears. Such errors are induced during manufacturing and assembly. Two mathematical models of spiral-bevel gears were included in the investigation. One model corresponded to the motion of the contact ellipse across the tooth surface (geometry I) and the other along the tooth surface (geometry II). The following results were obtained: 1) Kinematic errors induced by errors of manufacture may be minimized by applying special machine settings. The original error may be reduced by an order of magnitude. The procedure is most effective for geometry II gears. 2) When trying to adjust the bearing contact pattern between the gear teeth for geometry I gears, it is more desirable to shim the gear axially; for geometry II gears, shim the pinion axially. 3) The kinematic accuracy of spiral-bevel drives is most sensitive to eccentricities of the gear and less sensitive to eccentricities of the pinion. The pecision of mounting accuracy and manufacture is most crucial for the gear, and less so for the pinion.


2018 ◽  
Vol 10 (7) ◽  
pp. 168781401879065 ◽  
Author(s):  
Shuai Mo ◽  
Shengping Zhu ◽  
Guoguang Jin ◽  
Jiabei Gong ◽  
Zhanyong Feng ◽  
...  

High-speed heavy-load spiral bevel gears put forward high requirement for flexural strength; shot peening is a technique that greatly improves the bending fatigue strength of gears. During shot peening, a large number of fine pellets bombard the surface of the metal target material at very high speeds and let the target material undergo plastic deformation, at the same time strengthening layer is produced. Spiral bevel gear as the object of being bombarded inevitably brought the tooth surface micro-morphology changes. In this article, we aim to reveal the effect of microtopography of tooth shot peening on gear lubrication in spiral bevel gear, try to establish a reasonable description of the microscopic morphology for tooth surface by shot peening, to reveal the lubrication characteristics of spiral bevel gears after shot peening treatment based on the lubrication theory, and do comparative research on the surface lubrication characteristics of a variety of microstructures.


Author(s):  
Zhang-Hua Fong ◽  
Chung-Biau Tsay

Abstract Kinematical optimization and sensitivity analysis of circular-cut spiral bevel gears are investigated in this paper. Based on the Gleason spiral bevel gear generator and EPG test machine, a mathematical model is proposed to simulate the tooth contact conditions of the spiral bevel gear set. All the machine settings and assembly data are simulated by simplified parameters. The tooth contact patterns and kinematic errors are obtained by the proposed mathematical model and the tooth contact analysis techniques. Loaded tooth contact patterns are obtained by the differential geometry and the Hertz contact formulas. Tooth surface sensitivity due to the variation of machine settings is studied. The corrective machine settings can be calculated by the sensitive matrix and the linear regression method. An optimization algorithm is also developed to minimize the kinematic errors and the discontinuity of tooth meshing. According to the proposed studies, an improved procedure for development of spiral bevel gears is suggested. The results of this paper can be applied to determine the sensitivity and precision requirements in manufacturing, and improve the running quality of the spiral bevel gears. Two examples are presented to demonstrate the applications of the optimization model.


Sign in / Sign up

Export Citation Format

Share Document