scholarly journals Discussion: “Laminar and Transitional Boundary Layer Structures in Accelerating Flow With Heat Transfer” (Rued, K., and Wittig, S., 1986, ASME J. Turbomach., 108, pp. 116–123)

1987 ◽  
Vol 109 (2) ◽  
pp. 310-310
Author(s):  
J. W. Polkowski
2019 ◽  
Vol 32 (2) ◽  
pp. 1905117 ◽  
Author(s):  
Wenming Li ◽  
Zuankai Wang ◽  
Fanghao Yang ◽  
Tamanna Alam ◽  
Mengnan Jiang ◽  
...  

1986 ◽  
Vol 108 (1) ◽  
pp. 116-123 ◽  
Author(s):  
K. Rued ◽  
S. Wittig

The accurate prediction of heat transfer coefficients on cooled gas turbine blades requires consideration of various influence parameters. The present study continues previous work with special efforts to determine the separate effects of each of several parameters important in turbine flow. Heat transfer and boundary layer measurements were performed along a cooled flat plate with various freestream turbulence levels (Tu = 1.6−11 percent), pressure gradients (k = 0−6 × 10−6), and cooling intensities (Tw/T∞ = 1.0−0.53). Whereas the majority of previously available results were obtained from adiabatic or only slightly heated surfaces, the present study is directed mainly toward application on highly cooled surfaces as found in gas turbine engines.


Sign in / Sign up

Export Citation Format

Share Document